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CHAPTER 1

INTRODUCT TON

1.1 The Conceptual Framework

The purpose of this investigation is to study
organizations, their structure, and their development from
the viewpoint of general systems theory. In general, organi-
zational structure is characterized by

1ls A division of responsibility among organiza-
tional subunits

2+« The subunits' means of exercising these
responsibilities

3. Measures of the subunits! performances

i« Means of signalling between subunits to
indicate actions to be taken.

The responsibility which is divided is one of controlling
a process 8o that some useful task is accomplished as the
process unfolds. Ttem 2, then, includes the manner in which
control actions are transmitted to effect the evolution of

the process.

The theory of self-organizing systems is con=-
cerned with systems which are capable of modifying their own
structure. This theory can be of value in operations research
by supplying m:asures of organizational efficiency and

mathematical models of changes in the structure of organi-




zations. Although reorganization has been recognized<2) as

o——

a common method of attacking organizational inefficiency, the

study of structural changes in organizations, i.e. "organization

an—— |

theory,® is mostly qualitative in character. An effective
theory of self-organizing systems would contribute substan-

tially towards quantifying organization theory.

T Prmapme }

Two different types of self-organizing systems

are discussed by MesaroviE,(l7) causal and teleological.

pRES—————)

Causal self-organizing systems are wpreprogrammed® to change
their structure in response to certain stimuli. Teleological
self-organizing systems, on the other hand, have a specified
goal or purpose; the structure modifications are carried out
by thé system itself so as to pursue this goal as effectively
as possible. The behavior of a teleological self-organizing
system is purposeful; that is, it involves a goal-oriented
choice of a particular structure from a set of possible struc=
tures. 8ince operations research is concerned with purposeful
systems, we will confine our study to teleological self=-

organizing systems,

One of the difficulties encountered in the study
of such systems is the absence of an ordering relation defined
on the set of all possible structures of the system. Since

organizations are themselves teleological self-organizing




systems, this difficulty may have contributed to the sparsity
of quantification in organization theory. The main task of
this thesis is to develop such an ordering relation, sn that
the system will have a basis for determining the "best® struc-

ture under which to operate.

The conceptual framework within which we will
study teleological self-organizing systems is that of a "multi-
level, multi-goal (mLnG)" system. In the mLnG representation
considered in this thesis, the researcher has complete know-
ledge# of the components and their interactions. These compon-
ents are

(1) transformation elements
(2) goal-seeking elements.

Elements of type (1) specify a set of transitions on a set of
operands into a set of transforms°<5) For example, the trans-
formation T(a—b, b—c, c)a), effects the transition

cab—»abc, from the operand tcab® to the transform #abc.®

Consider a set S of transformation elements,
each member of S acting on the same set of operands. Elements

of type (2) are assumed to have two capabilities:

#A38 opposed to the "black box problem," where an
experimenter attempts to deduce the contents of some unknown
system by adjustment and measurement of its inputs and out-
puts, respectively.
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(1) selection of a particular member of §

‘(ii) minfluencing® another goal-secking element
in its choice of a particular member of S.

Also, goal-seeking elements have a purpose attributed to them.
The degree of success of achievement of this purpose depends
on the transforms of the operands resulting from the trans-
formation selected. The reader is reminded that we are not
concerned with detecting the purpose; the assumption will be
made that a well-defined purnose exists for each goal-seeking

element in the system.

142 Scope and Outline of the Investigation

In the sequel, we will be concerned with the
situation where the responsibility for choosing a transforma-

tion from the set § is divided among more than one goal-

#As an example, let S consist of the two trans-
formations Tl(a—)b, b—c, c=a) and Te(a—sc, b=, c=a),

and.the ‘system be composed of S and a goal-seeking element
Gl « If the purpose of the goal-seeking element Gl is to

achieve the result "acb® from the operand "cab," clearly T2 is

the transformation it should chooses If we introduce another
goal-seeking element G2 into the system, having the capability

to alter Gl's goals and with the purpose of achieving the
result Wabaca®" from the operand "cacbc,! then G, should change
Gl's desired result to wabc* in order to cause Gl to select
Tl .




seeking element with the capability of type (i) noted above.
The details of how this is contrived are deferred until the
next chapter; there, we will construct our system so that the
contribution which each goal-seeking element makes towards
selection of a particular member of § affects the degree of
achievement of the goals of all the elements responsible for
the choice. In addition, we will be interested in hierarchical
arrangements of goal-seeking elements, where ‘the group of
goal-seeking elements with the divided responsibility described
above are influenced by goal-seeking elements having the

capability (ii} noted earlier.

The popular examole of the thermostat-furnace
system serves well to illustrate the concept of a multi-
level, multi-goal system, as well as how the goals of the
individual elements will be assumed to affect each other. We
imagine a large apartment house, where each individual apart-
ment has its own thermostat-controlled furnace. The apartment
house is single=storied and the walls between apartments are
quite thin, so that the thermal diffusivity between apartments
is high enough for the temperature in each apartment to be
affected by the temperatures in adjacent apartments. Rach
apartment dweller knows none of his neighbors, so that these

heat sources or sinks are lumped with the environmental dis-




turbances, i.e, outside air temperature; thus, there are no
abnormal behavioral consequences presemt, such as an apartment
dweller being willing to undergo extreme discomfort in order

to inflict an unusual disturbance on his neighbor.

In each apartment, the thermostat can be thought T
of as choosing an element from the set of transformations .
composed of the two elementsg

1. cold air—3 cold air,

2. cold air——>hot air,
in order to achieve its goal of maintaining a level of tem-
perature in a room., The set of transformations from the
over-all viewpoint, that is, for the system composed of all
the thermostats and furnaces in the building, is
cold air;__aYl by thermostat No. 1

cold air._~>Y2 by thermostat No. 2

T, . 1=1,2,3,000,2,

cold air——4>Yk by thermostat No. N

where the Y.'s assume all combinations of the wvalues "cold

3

air® or "hot air" as the subscript 1 ranges over its indi-

cated values. This is an example of 1ING control.

The occupants of these apartments control their
individual furnaces from the second level, by setting the

goals of the thermostats. The system composed of the furnaces,




thermostats, and apartment dwellers is a 212G system. If the
apartment house has a ®house physician,® who prescribes a
different room temperature to each tenant (the goal of the
house physician being to keep the tenants as healthy as
possible), inclusion of this individual defines a 3L(2N+1)G
system. The physician indirectly exerts control on all the

furnaces down through the tenant=thermostat hierarchy.

The idea of a "state of equilibrium® will be needed
in the sequel. The systems which we will study in this and
succeeding chapters will be dynamic systems, characterized at
a particular time t by the values of a finite set of numeri-
cal quantities xl(t), x2(t), sy X (t). These quantities,
called "state variables," constitute the components of a vector
x(t), the state vectore# The "line of behavior® of a dynaﬁic
system is a trajectory in s-dimensional space, governed by
differential equations if changes occur continuously in time,
or by difference equations if changes occur at discrete times,
to’ to + Aty anoy to & naAt; «oo o In the continuous case, if
the state vector remains constant over a non-zero interval of
time, however small, that state is a state of equiliﬁirumq

Tn the discrete case, a state of equilibrium is characterized

#An underlined quantity denotes a vector through—
out this thesis.




by the equation x(tl+¢ﬂt) = x(tl) + In either case, a state
of equilibrium demonstrates the property of being unchanging

in time. This investigation will be confined to the discrete

case.

Notice that, because of the way we look at the
system, i.e. microscopically, when the entire sysﬁem is in a
state of equilibrium, each element composing the system is
also in a state of equilibrium. That is, each part of the
system is in a state of equilibrium in the conditions provided
by the other parts. One can also demonstrate the converse
statement as Ashby(s) does, in order to arrive at the result:
the whole system is at a state of equilibrium if and only if
each part is at a state of equilibrium in the conditions pro-

vided by the other parts,

Control of a discrete dynamic system is a matter
of selecting a transformation element from the set of such
elements, i.e. exerting a "control action,® at each transition
go that the behavior is in some sense best. In the mLnG
approach considered here, a performance measure is associated

with each goal-seeking element.

The mLnG systems considered in this investigation

have a single highest-level or Mapex" goal-seeking elementj

<




its goal is considered to be the over-all system goals. This
element will always have the capability of type (ii)«®* We

will assume the apex unit has all the information to determine

the over=-all optimal control law, but because of its capabilities,

must influence other goal-seeking elements to implement it.

The position of a structure in the ranking of a
structure set under the ordering relation (mentioned in the
previous section) to be developed is determined by the effi-
ciency of the lower level units in synthesizing the optimal
control law when operating in that structure. In order to
illustrate this, assume that in a mInG system;

l. The lower level goal=—seeking elements are
collectively exerting control by engaging in

a temporal "action-counteraction"(3) type of
interplay in an attempt to arrive at a state
of equilibrium, where the action of each unit
is best under the conditions imposed by the
other units.

2. The goal=seeking element at the apex has the
ability to influencesst these lower-level ele-
ments so that their collective equilibrium
control actions coincide with the optimal
control rule from the over-all viewpoint.

*nInG systems with this characteristic have been
termed Windirect intervention® systems by Mesarovid.(17;18)

**In order to maintain autonomy of the lower-level
goal-seeking elements, this will not be in the form of a
fdirectivem as to what control action to apply.
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3s The rate at which the interplay described in

(1) above approaches equilibrium is at least

partially determined by the structure under

which the lower-level goal-seeking elements ‘

operate,
As long as the interplay described in (1) is in the “transient ‘
phase," because of (2), the over-all optimal control law is
not being achieved. Because of (3), we can rank the struc- '
tures according to how well this control law is approximated;
a comparison of two structures would lead to a designation of ‘
the one with the higher rate of convergence as the better.

For, this would assure arrival at equilibrium, and hence

optimal control, in the smaller amount of time.

Suppose we allow the highest level goal-seeking
element in a mLnG system the additional (to the type (ii) cap-
ability already assumed) capability to change the existing
structural arrangement of the lower level elements. With this
capability and the method of ranking structures described
above, this system displays behavior which we would classify
as ngelf-organizing.® The goal-seeking element at the highest
level can alter the structure so as to "select" a structure
from a set of different possible structures ®"below!" it. This
behavior is also purposeful, in that the criteria of choice
assures the best approximation to the optimal control law,

i.e, is Wgoal-oriented®; thus, under the assumptions made in
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the previous paragraph, we would have a teleological self-

organizing system.

In the next chapter we will formulate a general
mathematical framework within which we shall quantify some
of the ideas discussed above. Chapter IT also gives defini-

tions of the concepts which will be employed in this thesis.

Chapters TTT through VI develop the ideas dis-
cussed above for an important* special case, a linear system
with a quadratic loss function. In Chapter ITI the optimal
control law is derived. Chapter IV is concerned with the
action-counteraction interplay between two goal-seeking ele-
ments and Chapter V discusses how a higher-level unit uses its
influence to effect optimal control out of this interplay.
Chapter VI is concerned with developing a self-organizing
system in the manner indicated in some earlier remarks of

this chapter.

Chapter VII gives the summary and conclusions.

*gince it lends itself easily to analytic treat-
ment



CHAPTER IT

MATHEMATICAL REPRESENTATION AND DEFINITION

241 Introduction

In this chapter a mathematical representation of
an abstract multi-level, multi-goal (mLnG) system is con-—
structed. As we mentioned in Chapter I, these systems are
composed of two types of elements, transformation elements
and goal-seeking elements; thus, mathematical attributes and

relationships will be imputed to these two types of elements.

The mathematical arguments throughout this and
later chapters will be treated so that the rigorous aspects,
such as existence of solutions, interchange of limits, etce,

will be omitted.

This chapter also serves to define some of the
concepts and specify some of the notation utilized in later

chapters.,

2.2 Notational Conventions

In this and succeeding chapters, finite sequences
of column vectors will be represented by the upper case letter
corresponding to the lower case designation of the elements
of the sequence; thus, M denotes E(l), m(2), ssey m(T),

where T 1is finite. Subscripts common to the elements of

12
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such a sequence will be so indicated by appending them to the

upper case designation; thus X, denotes xi(l), xi(2), ceny

1
% (T)e

We will have occasion to form column vectors by
nstacking" the elements of finite sequences of vectors. This
is denoted by

z o= [2(1) 2(2) oo 2(T)]

The symbol / denotes transposition of vectors and matrices.

Note that 2z above determines a point in sT-
dimensional euclidean space. This correspondence between
finite sequences of vectors and points in multi-dimensional

space will be utilized often in the sequel.,

2.3 Dynamical Representation and Control

The core of the mathematical representation con-
sists of a scheme that explains the trajectory or temporal
behavior of the point determined by the state vector of the
system, x(t) =[kl(t), xz(t), sus xs(tﬂ s in s-dimensional
euclidean spacey

AX(t) = £[x(), m(t), z(t)] 5 x(0) = ¢, (2.1)
where ® A is the forward difference operator in the discrete
case and the time derivative in the continuous case. The

vector functions m(t) and #(t) in (2.1) represent the control-
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led and uncontrolled "inputs," respectively, the latter hence-—
forth being referred to as the ndisturbance." The discussion
will proceed under the assumption that the process governed
by (2.1) is discrete,” so that (2.1) is a difference equation,
and can be rewritten as

x(t41) = S[x(t), m(t+1), z(+41)] , x(0) =, (2.2)

t =0, 1, 2, ses, T=1,

Where T will be assumed to be finite. Rquation (2,2) will
subsequent ly be referred to as the "causal subsystem," the
letter § being used to remind us that it is regarded as a

3
system.

* . . . . .
An ahalogous discussion exists for the continuous
case.

**In some control problems, the controlled input
(to 8) vector m(t) is itself an ocutput of another system:
m(t+1) = A[m(tT, v(t+1)], where v is the controlled input
To A. The Vector v may have only a single element, just
as m could have in (2.2)s« This system can be integrated
with the causal subsystem S by defining a new state vector
y(t) = x(t), m(t) 7+ Then, the vector functions A and §
Tan be combined into a new vector function T as follows: —

x(441) = § x(t), An(t), v(t41] 2(++1)}
m(t+1) = ATm(t), o(t+41)]

becomes
y(t41) = 2[y(6), ¥(t41), 2(t41)],

which is exactly the same form as (2.2); thus, the introduc-
tion of A above causes no change in the conceptual frame-
work at this level of generality.
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In Chapter I we distinguished between goal-seeking
elements which had the capabilities to select a particular
transformation element from a set of such elements and goal-
seeking elements which influenced other goal-seeking elements.
In this chapter, the first capability, which was termed type
(i), takes the form of selecting certain controlled input
vectors at each transition, by regarding the process deter-
mined by (2.2) as the successive application of elements in a
sequence of transformations on the initial state 5(0) = Cs
The duality between the sequence of controlled input vectors
M and the sequence of transformations

s[x(0), n(1), 21 s[5[x(0)s n(1), (1], n(2), z(2)],
eoo 885 «oo s[x(0), m(1), 2(1)], n(2), 2(2)], «vel]s n(T),
E(Ti] is well knowno(é)

Consider a goal=-seeking element G having the
capability of controlling the causal subsystem (2.2) through
selection and implementation of the controlled-input vector
sequence M. Suppose @'s goal is to minimize a ®Wloss func-
tion® g(M, X, U), where u{t) is the vector of parameters in
the loss function at the transition x(t-1)-2x(t). These
parameters are regarded as uncontrolled by G. The ®control
problem® facing G, then, is Wdetermine M so as to minimize

g(M, X, U) subject to (2.2)."%
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The solution™ of this problem is an expression
for the "optimal poliqy"(é) or "operationnﬁz) Mo in terms

of the sequences U and 2. This is denoted by**
(), = (U, 2) (243)

It is clear that G must possess complete information about
U and 2 1if it is to evaluste Mo correctly, i.e. determine

the operation to be performed.

2,); Organizational Structure and Equilibrium State

Any collection of goal-seeking elements, each of
which participates in the control of a single causal sub-
system, will henceforth be referred to as a wcontrollers®
Consider an organizational structure of a controller consist-
ing of two first level goal-seeking elements Gll and G12
having the capability of type (i) and a single second level
goal-seeking element G2 having the capability of type (ii),

which is characterized by the following:

*In the mInG theory, goal-seeking elements are
assumed to have at least the problem solving capabilities of
the researcher.

**ncluded in (2+3) and the comments following it
is the case where the solution determines an optimal "feed-
back controller,” i.e. a rule of determining MO elemen t-by=-

element as the process evolves, according to the values assumed
by the state variables, denoted symbolically by

m(t41) = h[x(t), z(t+1), u(t+1) ]
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ls A reticulation (splitting up) of the causal
subsystem, into two causal subsystems Sl and

52, by partitioning the vector function § and

hence the state vector E so that

x, (t41) = 8, [x(4), m(t41), z(t+1)] (244)
Xp(+41) = Sp[K(t), m(t4l), 2(t41)] (2.5)
x(4) = [x(b) %) ] « (246)

2« The causal subsystem si is placed under the
cognigance of Gli’ i=1, 2, i.es Gli is
assumed to be aware of the functional form of
§i but not of §j’ for i # je

3« The controlled innut vector is partitioned

m(e) = [m(+)s my(v)] (2.7)
and Gli is given the capability of select-

ing mi(t) at each transitiona

Lhe Tt is assumed that Gli's goal is to minimize

, _ 3*
the loss function gli(Mi, Xy Uy Yo

5« The second level unit G, has the capability
to adjust the parameters Ulf and UZ* in the
first level units' loss function. G2 is aware
of the entire system, i.e. the equation (2.2),
the method of partitioning S, and the goals
and means of control of Gll and G12'

6« Tt is assumed that G,

the loss function gQ(M, X, U)»

ts goal is to minimize

Figure 2.1 is a schematic diagram of the effects exerted on

and within the 2L3G system considered here.
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Figure 2.1
U
X2 X
1 % > Ry
b4 S ﬁ b4

The dynamics of the two subsystems Sl and 82 are
such that, under identical inputs and disturbances, the
transition from x(t) to x(t+l) governed by equations (2.k),
(2.5), and (2.6) is identical to the transition governed by
(242)s Equations (2.4) and (2.5) can now be rewritten as

X (441) = 8, [ (1), my (b+1), w, (+41) ] (2.8)
for i = 1, 2, where ﬂi(t+l) is the vector of uncontrolled
inouts to 5; and contains the effects of Ej(t) and Eﬁ(t) for
i # j. The organizational structure under consideration here
can now be characterized as the simultaneous consideration of

the three control oroblems
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(i) of Gq4 for i =1, 25 W"choose M, so as to

minimize gli(Mi’ X5 Ui*) subject to (2.8)."

(ii) of G2; nchoose Ul* and U * so that Gll and

2
012 will together determine M so as to

minimize gQ(M, X, U) subject to (2.2)em
The solution to Glirs problem is an expression analogous to
(243),
) =M, (0% W) (249)
i‘o ivii 2 M4

The second level element G, determines the optimal control

2
law (M)O from (243)« Denote that part of (M)o corresponding
to the controlled input variasbles under the control of Gli
by (Ml)oe In order for the optimal control law to be synthe-
sized by the 213G controller, we must have

(), = 0) (2410)
so, substituting (Ml)0 into the left side of (2.9) and solving
for Ui*, we get

#, _ .. . d )
(0, *y, = u* [, ] (2.11)

as the solution of G,'s contrcl problem.

Under the conditions stated above, Gli cannot,
in general, determine (Mi)o from (2.9), for LA is a function
of X, for i # j+« The line of behavior X, is affected by X,

so that a functional dependence of Wi on Xi is established.

Since xi cannot be determined until Mi is, we have arrived
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at an impasse. In order to bvpass this difficulty, we pro-

pose the iterative process described below.

The finite T-stage process governed by (2.2) is
imagined to be repeated an indéfinite number of times. This
can either be interpreted as a “real" infinite-stage process

with

x(0)
2(t)

for £t =1, 2, «eey Tandn =0, 1, 2, sesy, Or as a "fictitiousn

2 = E(T*l) = .}5(2T+2) = qee = i(n'r"'n) = ves

Il

z(t+nT4n), u(t) = u(t+nT+n),

repetitive simulation of the finite T-stage process. Suppose
Gli adopts the following procedure in order to resolve the
unknown effect of Wi. For the initial iteration of the process,
i.es fromt =0 to t =T, Gy uses gi(t) =0 for t =1, 2, «uu,
T in determining its control input vector sequence from (2.9).
This is denoted by (Mi)l, the subscript "1t outside of the
parenthesis determining the period over which this sequence
runs. This notation will be extended to the other quantities
of interest here; thus, (x'i)n means the sequence of Ei(t)'s
during the nt? evolution of the process. If we solve (2.8)
for Hi(t+1), we can write the discrepancy in terms of the ob-
served quantities

wy (1) = gy, (841), x,(0), m, (441)] , (2,12)

t = O, l, LR T"‘l\
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Now, after G., determines (Mi)l, as indicated above, we can

1i
imagine that ®Wimplementation® of this is instituted by Gli
actually "feeding in® to S, as its share of the inputs, the
vectors gi(l), Ei(Z), cony Ei(T) at the appropriate times.
Gy cans in turn, observe the subvector fi(t) of the state
vector §<t) at each time step, and with this information, can
compute a 2i(t) for each integral t wusing (2.12). Denote
the sequence thus obtained by (Wi)l, and assume that Gli now
uses (‘wi)l as the W, in (2.9) to compute (Mi)é' Then, the
entire procedure can be repeated. In general, we can ideal=~
ize G1i as carrying on an iterative procedure, where it
computes (Mi)n by the formula, analogous to (2.9),

() =% [0 ()]s (2.13)
then uses the observations it makes on (xi)n to compute the
vector sequence according to*

"(6) = g [x"(4)s 5" (¢-1), 3"(%)] (2.1)

t =1, 2y «asy Ty
which is obtained from (2.12)e« TIf the process ever yields
the equality ® )y = (“i)n+l’ we would say that the process
has arrived at a state of equilibrium, i.e. a state which is

unchanging for subsequent periods of evolution.

*A superscript will be used to indicate vectors of
a specific sequence, so that win(t) denotes a vector in the
sequence (wi)n’
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Notice that if a state of equilibrium is attained,

Lo (M), = (wi)n*l’ then (M;), = (Mi)n+1 and <xi)n =

(X Furthermore, these conditions also hold if i is

i)n+l'
replaced by Jj, iees G11 and G12 observe the event "arrival

at equilibrium® simultaneously. This must hold, because the
tresidual®" effect felt by Gli’ that is, the difference between
the observed and the anticipated values of !%Kt)’ is due to

the acts performed by Glj5 all other effects are identical

over each iteratione.

Unfortunately, we cannot guarantee that every such
process of the type described above will arrive at a state of
equilibrium. We can, however, establish sufficient conditions
for this. The argument involves a technique of mathematical
analysis known as the "“method of successive approximationsn
and depends heavily on the notion of a "contraction mapping,"

which we now consider.

If it is possible to find a transformation
Py = f(pl) of finite~dimensional euclidean space* into itself
such that the transforms of two points in the space are
nearer to one another than the original points were, f is

called a "contraction mapning."(lh) If we denote the distance

*The argument generalizes to complete metric spaces;




23

between two points Py and 2 in multi-dimensional Euclidean
space by d(pl, p2), this can be expressed in mathematical
terms by requiring the existence of a positive scalar a <1
such that

a[f(py)s £(py)] = & d(pys Dy)e (2.15)
It is easy to see that successive applications of a contrac-
tion mapping, i.e.

Py = £(P1)s Py = £(Pp)s eees Ppyy = £(pp)s eee (2.16)
would result in

p = £(p) (217)

to any accuracy desired. For
= n-l
A[Ppyrs Py ] = A[E(y)s £(py )] = &7 d[pys pg)e (218
If f 4is a contraction mapping applied successively as indi—

cated above,

n].ﬁ)moo d I:pn+l’ prj: 0,

and n}}g%O p, =P, where p is the unique solution of (2.17).

Suppose the vector of uncontrollable variables
Ei<t) has ds elements. Then, as we noted in section 2.2, the
vector-sequence Wi determines a point in qiT-dimensional
euclidean spaces The sequence of vectors (!ﬁ)l’ (Ei)z, .o
thus determines a sequence of points in euclidean space of

qiT dimensions. Furthermore, a mapping between successive
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elements of the sequence of !&'s is implicit in equations
(2413) and (2.14); for, from (2.13), (1, ), depends on (wi)n-l
and.(n&)n depends, in turn, on (Mi)n. Hence, we can combine
(2.13) and (2.14) to find the mapping

(M3 )nyy = 2[00, (2.29)
If it can be established that (2.19) is a contraction mapping,

i.es that

{0 W} = om0 2fm),]]

£ aa{m), ®),] (2.20)

where a is a constant less than unity, our sufficient condi-

tion for convergence to equilibrium would be established.

Notice that we could have just as well investi-
gated the mappings between (M,), and (M;) ,, or between (X,)_
and (xi)n+l for the contraction property. Furthermore, if we
could establish that a mapping between equally spaced elements

of any of these sequences, say bhetween (xi)n and (X K is

i)n+

a contraction mapping, this would also be a sufficient condi-
tion for convergence to equilibrium. This can be easily seen

by noting that the sequences
(X )10 (Xydigrs (Xydopans oo
(X3)ps (Xidiaps (Xydopans oo

(xl)k’ (xi)Zk’ (Xi)Bk, XX




25

all converge to the same limit, since as we stated above, the
solution to (2.17) is unique; that is, it does not depend on
the point from which the sequence of successive mappings

begins.

A slight conceptual difficulty arises in cases
where the iterative process converges, i.es a w 1 in (2.20),
but an infinite number of iterations is required to obtain
(Wi)n = (W;),,q+ Henceforth, we will refer to “achievement
of equilibrium to any prescribed degree of accuracy." @Given
aé >0, if the sequence (Wi)l’ (Wi)z, «vs converges, there
exists a finite N such that d[_(wi)n’ (wi)n+1]“< 6 for
n > Nj; thus, in this case, "achievement of equilibrium within

8" would occur at the NEE iteration.

The iterative process described above is conducted
at the first level. Suvvose a < 1 in (2.20) and let (!&)e
denote the solution of W = £Qﬁ), where £ is the mapping
(2419)« The "control action in equilibrium,h (Mi)e’ and (W“i)e
are connected by the relationshio, analogous to (2.9);

= * . .
(M), —Mi[Ui CANE (2.21)
(Ml)e has the property that it is an optimal policy for Gy
in the conditi ons Ul% imposed by GZ’ when G12 uses the policy

(MZ)e’ and vice versa.
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Returning to the consideration of G2's control
problem, it is seen that (2.11) contains W Just as (2.9)
does. Since G2 is aware of the entire system and the optimal
control law (M)o it can obtain (wl)o and (wz)0 by solving
(2412) for 1 =1, 2, and for t =1, 2, «ss, T when the opti-
mal control law is applieds The following expression,
#*, _ __#r-, i

(0, = Uy [(M)gs (W) s (2.22)
obtained from (2.11), will assure that the first level itera-
tive procedure converges to the optimal control law, i.e,

that (M) = (),

If it is difficult to obtain (Wi)o by solving

(2.12) as indicated above, G, may ®assume™ an equilibrium

2
value for W,» say (wi)l;: then, using (Wi)l in (2.11), obtain
(Ui*)l. The iterative procedure between the first-level
elements, assuming it converges, arrives’ at the equilibrium
value (wi)el’ under the conditions imposed by (Ul'"')l and
(0, )2

process for (Wi)2 to determine a new first-level value (wi)ez'

. GZ now designates (wi = (wi)ol and repeats the
Continuation of this process defines a "nested" iterative pro=-
cedure, where each single step in the (Wi)n iteration involves

the entire (Wi)n iteration described earlier. Convergence

*Within some prescribed degree of accuracy.

T Lomwpmnt |

Sovmme



27

requires that
n+l _ n
)™ =n[m)"] (2.23)
be a contraction mapping, as well as f in (2.19)« This
case will not be considered further in this chapter. Tt

will appear again in Chapter VII.

Tt is interesting to examine the relation between
the concept of equilibrium, as we use it here, to similar
ideas in other theories. TIn mechanics, the idea of equili-
brium plays a large role, particularly in the sub-area called
wstatics®. A weight, hanging by a chain, is in equilibrium,
the downward force exerted by gravity being exactly balanced
by the upward force of the chain. In "dynamics", the concept
is also important, and begins to resemble our ideas aboves.

If we imagine the weight Yo be pushed so that s swinging
motion is introduced, the forces of friction impose a contrac-
tion mapoing on this system, in that the extreme point of the
arc of each swing is closer to the "point of rest®, or
tequilibrium point" in our notion, than the extreme point of
the arc of the previous cscillations. This is an example of

. WLyapunov stability."(23)

Game theory also uses the concept of fequilibrium

point"(16’19) in a manner quite similar to that described
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above. The iterative process described earlier can be thought
of as either a temporal repetition of a "game of prescribed
duration"(ll) or as the "fictitious plqy"(lé) of such a game.
Game theory also utilizes the idea of “mappings with a single
fixed point"(l9) to determine points of equilibrium. A
particular application of game theory to the types of problems

arising in multi-level control is discussed in Chapter IV.

Various theories in economics utilize the idea of
equilibrium to explain prices based on laws of supply and
demands The "dynamic cobweb"(zl) concept is based on the fact
that the present supply creates prices causing a specific
demand which, in turn, leads to a new level of supply. This
procedure is somewhat analogous to the iterative process de-~
seribed earlier in that it defines a contraction mapping
under certain conditions. Notice in Figuwre 2.2 that the dis~-

tance between 52 and S. is less than the distance between S1

3

and Szo

Figure 2.2 Price

Quantity
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As we stated in Chapter I, we propose the rate of
convergence to equilibrium as a means of comparing the effect-
iveness of different structures of a mInG system. Referring
back to the characterization of a structure made at the be-
ginning of this section, it is clear that we can represent
each element of the structure set considered here by the two
vectors o= = (7, 9% eeey 9) and p = (uqs Bos sses W)
called #"selector vectors®, having the following propertiess:

o

i

i if xj(t) is under the cognizance of G,,
where 1 =1, 2, j =1, 2, sesy, 8, for the special case
above, and

by = i if mi(t) is manipulated by Gqpg

where k =1, 2, «s, * and again i =1, 2, For example,

with five state variables and 6 controllable variables

o

®

would mean

%, (%)

(1211 2)

!

(221211)

[0 (8) %508 %,(8)] 7 2p(0)efes(8) (8] 7

and

my(t) = [m(8) my(t) m(£)] 75 my(t) = [my(t) mg(t) mg(t)] 7

If the rate of convergence of the iterative process

between the two first level goal-seeking elements varies as
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the structure changes, then that structure which affords the
most rapid rate of convergence is best. For, suppose the
repetition of the finite-stage process is regarded as an in-
finite-stage periodic process, as mentioned earlier. The
faster the rate of convergence, the better the approximation
of the sequence (M), (M),» (M)3’ +es to the optimal control
law for this process, (M)o, (M)o,'(M)b, ess « Here, (M)n
denotes the combined control actions (Ml)n and (MQ)n for the
nﬂl- tperiodn, and nl_ir)nm (M)n = (M)o, through G,fs *influence"

2

as noted earlier.

2.5 Self-Organizational Activity

In this section Gy is allowed the additional®
capability of changing the organizational structure of the
controller. An example of a "structure change® as it is re-
garded in this investigation would be ®take xk(t) from G,,'s
cognizance and place it in Gll's, i.es change ‘rk from 2 to 1,
making appropriate changes in the loss function, the reticula-
tion specified by (2.4), (2.5), and (2.6), and the means of
influencing Gyq and G12'" The contraction factor a in
(2420) could be regarded as a structural parameter, since it

decreases as the rate of convergence increasesj thus, if the

*To the capability of type ii already granted it.
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above change produces a reduction in a, it would be classi-
fied as a change for the good. The variation of the parameter
a, then, establishes an ordering relation over the set of

structures considered here.

%
The svecification of Ul* and U, by G, according

2
to (2.22) can be regarded as a mathematical convenience. It
allows us to hold the equilibrium point constant while varying

the structure. This results in a concentration on the self=-

organizational aspects, the main objective of this thesis.

Let us regard the iterative process as determining
a dynamic system whose state trajectory is Xl, XZ’ eee a
Tt is interesting to compare the problem of which structure
(9),

G2 should choose with a conventional control problem

"given a dynamical system

y(++1) = P[y(t), £(4)],
find the vector function f£(t) such that given an initial value
X(O), the system reaches equilibrium in the shortest possible
time.® The "structure-choice problem® is strikingly similar;
wgiven a dynamical system

L T 9 [@),J’
where the transformation Q, depends on the structure and has

a contraction factor a, find the structure such that given an
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initial value (E)l’ the system reaches equilibrium in the

shortest possible timed"

Throughout this chapter the discussion has been
held to a high degree of generality. Such things as the
question of the stability of equation (2.4) under the ®forcing
function”" represented by M and the "realizability®" of the
solution M have been assumed away. In the remainder of
this thesis, we will investigate special cases which, although
simple, will contain all of the features brought out here.

In particular, Chapter VI is concermed with the application

to a specifib case of the general statement made above, namely
that the rate at which a reticulated mInG system approaches
equilibrium is a good measure of the effectiveness of the

reticulation.

{ “Tewee | Ty e A v— W——



CHAPTER ITI

OPTIMAL CONTROL FOR A 1L1G SYSTEM

3.1 TIntroduction

The purpose of this chapter is to describe a
particular control problem which we will be concerned with
in the sequel, The most important feature of this control
problem is that it is solvable analytically using standard
techniques. Although the problem is simple, it still con-
tains all the relevant components of the general mathematical
representation stated in the previous chapter. The solution
will be derived under the assumption that the controller is
of the simplest possible structure, i.e. single-level
single—-goal, since this is the form in which it will be
applied later. Of particular interest will be the formulas
expressing the operation to be performed by this single goal
unit in terms of the state variables, uncontrollable vari-
ables, and disturbances; we will use these many tinmes in

what follows,

The notational convention of representing
sequences of vectors by upper case letters is carried on in

this chapter,

The situation we will consider here is this: a
system § is such that changes in its state vector x(t) occur

at discrete instances of time. These changes can be described

33
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by the linear, dynamic, vector-matrix difference equation
x(t41) = Ax(t) + z(t+1) + m(t+1), (3+1)

over a finite number of time periods, + =0, 1, 2, see, T=1,

with initial conditions x(0) = c. The vector z(t) is consider-

ed to be an uncontrolled innut or disturbance which is pre-

dictable without error over the entire time domain, hence

is essentially a vector of parameters. The vector g(t) is

the controlled input vector, having the same number of

elements as E(t). The matrix A is non-singular and constant

over the period of interest.

A goal unit G is charged with guiding the state
trajectory x(1), x(2), «ss, x(T) of S along a path which
minimizes

T
06X = 5= [x(t) - u(t))r [x(+) - n(v)) (3.2)

t=1

+ %: m* (t) Dm(t),
t=1
where D is a positive-~definite diagonal matrix and U 1is
a known vector sequence, with the vectors u(t) having the
same number of elements as x(t), and with a definite element-
by-element association between the twoe. The seqence U

can be thought of as determining an ®ideal trajectory% along
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which (¢ “desiresm the actual state trajectory determined by
X to move. For éxample, if xi(t) is msteel capacity at t,"
ui(t) would be Mdesired steel capacity at t«® The perfor-~
mance criteria g(M,X), then, represents a balance between

the cost of tolerating nonideal behavior and the cost of

doing something about it.

The set of acts available to G at any particular

transition, say at the transition
x(t=1)—>x(%),

is simply the numerical adjustments ml(t), m2(t), seny ms(t)
made on the corresponding elements of the vector Ax(t-1) +
z(t). The "operation® or “optimal policy" performed by G
is emission of the vector-sequence of these adjustments, M,
which minimizes (3+2)s The operation is assumed to be
realizable. We now proceed to find the operation, i.e, solu-

tion to the minimization problem.

Notice that the entire process governed by (3.1)
over the times O, 1, 2, «sey T, can be written as a %closed
form" solution of the difference equation (3.1), in terms of
the initial states and subsequent control input vectors and
disturbances. This is obtained by applying the formula, de~
rived in Appendix 4,

k
x(k) = a0+ 50 AFI[m(3) + 2(9)]
J=1
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This can be further. abbreviated in vector-matrix form:
x=xM+z] +¢,

[1 0o o . 0]
0

(3+3)

where X = | A A T ees s & matrix with matrix

ATR T2 o 1
elements, and Ac
Az_c_:
o= v | .
ATc

The ®"loss function" now becomes

ewX) =[x -] [x-u]+ wem,

where D O 0 e O]
0 D 0 “es 0

E= . . .

L] . LN ] [}

L] . L]

0 0 0 cee D

| -

3+2 Derivation of the Optimal Control Rule

The simple nature of this particular control

problem* is now evident. The problem is "minimize

*This is simply the sT-dimensional analogue of
the scalar problem, "minimize (x—u)2 + em® , subject to
x = k(m+z) 4+ c, where ¢ > O."
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(X = U)'(X - U) + M'EM, subject to X =K(M + 2Z) + C, where
E is a positive-definite matrix." It can be solved either by
employing the method of Lagrange's multipliers, or by substi=
tution of K(M + ) + C for X directly in g; we will do the
latter. Let g(M) be used to denote that this substitution
has been made;

gn) = [KQu+2) + ¢ =Tt «[KM+2) +C-T] ()

+ B

I

MY(KIK + B)M + 2(KZ + € - 1)'KM

+

(2 + ¢ = U)' (KB +C - D).

The diagonal matrix E is positive definite and,
since X is non-singular, X'K is also positive definite.
Hence, K'K + E is positive definites The positive definite-
ness of K'K + E is a necessary and sufficient condition for

g to be a strictly convex function of the elements of M.

Tn order to find the stationary point of (3.k),
we differentiate g(M) with respect to the elements of M and
solve the system of linear algebraic equations which results”

from setting these derivatives equal to zero:

*The derivative of the quadratic form g with
respect to the vector M is a vector of the same dimension as
Me The details of thiS representation are relegated to

Eppendix B.
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3‘1%:2@* 2K'KM + 2K'(KZ + C = U) = 0 (3.5)

—=>¥ = (KK + E)" K (U - ¢ - K2). (346)

The minimum value of g(M) can now be found by
substituting M as obtained from (3.6) into g(M), as given by

(3e4);5 thus,
(3-7)

g (W) =(U~-¢-K2)[I-xxK+E)K](U-C - K2).

To determine the state vector sequence X which
results from mimplementing® the operation, (3.6) is swbsti-

tuted into (3.3), resulting in

X = K(K'K + B)"K'U + k[T - (XK + B) KKz
#+[1 - K(K'K + E)"lx']g,
or
1 1 4 (3:8)
X = K(K'K + E) (kv + E2) + [T - K(k'k + B) K],

3.3 Stability

In order to investigate the stability of the above
process, it is first necessary to introduce the concept of
a Mormt of both vectors and matrices. Define the norm of

a vector as

gl =[] [ Sxron@]Ys . o9
t=1

e [ o ]
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The norm of a matrix A is said to be "compatible™ with the
norm of a vector as defined above 4if

Haxt < [lall 1=l (3.10)
A method of constructing a matrix norm so as to satisfy this
compatibility condition is to apply the formula

[all =

max [|ax]| . (3.11)
x|l =1 ,

Norms of matrices also have the properties

[laBl| < [lal] |IB]1, (3.12)

[la4B|| < [la}] + [IB]], (3413)
and

L1l = 1. (3.1L)

In addition, Halmoz(lB) and Fadeeva(lo) prove that
1/2
HMI=@§NM]/ (3415)

and

A symetric =P ||a]| = max{u )]s le (W] (3.26)

In particulars
A positive definite =3r||a]|| =p (). (3.17)
In (3.15), (3.16), and (3.17) immediately above, pi(A) de-

notes the iEE characteristic root of A, the convention
bp S Bpg 8 By § U being understood here.

The process described by (3.8) will be termed

wstablet if for each e > 0, there exists a 6 > 0 such that
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any trajectory y(1), y(2), ««s, y(T) satisfying the condition
|1x(0) - y(0)|| s & satisfies ||x(t) = y(t)|| < e for
t =1, 2, «ssy Ts In order to demonstrate the stability of

(348), rewrite C as

T T 7]
A 9_ A 0 0 o 0] 2(_(0) (3018)
A22 0 A2 0 sao 0 ‘ X(O)
_ 3
g = Y ? (‘) A“ ou. (o) . = Jgux;
ATC 0 0 0 sae AT ‘ X(O)
L L 4 LT 4
since x(0) = ¢« Letting
- -
y(0)
7(0)
= . 01
Cy : (3.19)
y(0)
. .

we have, from (3.8),

T
s o) - y)] [xet) - yedp Y2 (3.20)
t=1

bix=x||

I - ek + B wdace, - o)1

where X and Y are both trajectories determined by (3.8) but
with different initial conditions« From (3.20), and taking
note of (3.10) and (3.12),
[x() = g()!] ={f§(’°) -y ] [x) - z(t)]}l/z
(3.21)

s Nzl s 11T - k) w1l e,eg Vs
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Now, it can be shown that ||I-K(K'K4E)-1K'|| < 1 (for an
indication of how this is doney see the proof of Theorem

5.3¢1 in the fifth chapter) and, from (3.11) and (3.18), it

is clear that ||J|{=||a]|. Also

T
e 11 = 5 [x(0)-z(0] [x(0)-y(o}y 2 (3.22)
J=l

= %2 | |x(0)-y(0)| | -

In (3422), we have utilized another property of the norm,
namely that if a is a scalar,

Iax|| = laf<||x]]+ (3423)
As a result of the statements immediately above, it is ap-

parent from (3.21) that

Hx(e)g) | < 11l 1TY2]1x(0)(0)| |

thus, given an e > 0, letting 6§ = e/(HAHTl/2

Y, it is
easily seen that if [|§(O)~X(O)|[ < & then lli(t)ﬁg(t)'l < e,
so that the process described by (3.8) is stables This de-

finition of stability is a specialization of ®"Liapunov

stabilityn (see Struble(23)y,

3.4 Sensitivity of the Loss Function to the Variation of

Certain Parameters

It is interesting to examine the value of
g min, as given by (3.7), for different values of the elements

of the positive definite diagonal matrix E, which are the
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elements of D (in (3.2)) repeated T times.® This can be
rigorously investigated by proving

Theorem 341y An increase (decrease) in at least
one element of E in (3.7) results in a decrease
(increase) in Bnin (M) as given there; these

manipulations are assumed to be constrained so as
to maintain the positive-definiteness of E.

Proof: Recall that KrK+E, and hence (K?K-F}?}fl and

K(Kvmg)'lxr, are positive definite. Now

(x(xr K+E)"1Kf] Lora (x"l)vEK"l. (3.24)
Consider the quadratic form
- S T
Q = g [k(x'k+8) K] T = g'a + p'Eps
R
where p= K g« Then
n > »

since E is a diagonal matrix. Now, it is clear from (3.25)
than an increase (decrease) in any ey results in an increase

(decrease) in @, for constant p and Q. Let T denote the

*I'he intuitive notion that g min increases (de-
creases) if any of the control costs increase (decrease) can

be seen by regarding the mabrix I—K(K'K+E)-1K' in (3.7) as a

generalization of the positive number 1@&?/(&?+e), with e > 0.
The right hand side of (3.7) can then be thought of as a

generalization of (u-c-kz)zfi-KQ/(k2+e)] where u, ¢, k, and 2
are scalars. Increasing e increases the expression in [],

. 2
which in turn increases (u~c—kz)2[i—%?/(k2+e)] if (u~c-kz)
is held constant.
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orthogonal transformation™ which reduces K(K'K+E)-1K' to

canonical form, and let

r=T4
Then
n
1 2
Q=2 =r
=1 Wi

so that an increase (decrease) in Q must result in a decrease
(increase) in at least one of the characteristic roots By
bps sees by OF [K(K'KAE) "X If we let s = T(KRAC-U) then

(3+7) becomes

n
Enin(MX) = (KZHC-U)! (KZHC-U) ~ _21 BS;2 s
1=

so that a decrease(increase) in any of the By's clearly

causes an increase (decrease) in €nin (M,E), Q+ED.

345 Dynamic Programming Solution

& method of obtaining the minimum of (3,2) subject
to (3+1) by dynamic programming is presented in Appendix C.
This should be a preferable method of solution when the
nutber of transitions of the process, T, becomes very large.
The dynamic programming technique substitutes solving T
systems of equations, each s x s, for solving one sT x sT
system of equations as was done above, where s dis the

number of elements in x(t) and m(t).

¥ exists since K(K'K*E)-IKY is positive-definite.



CHAPTER IV
SOME ASPECTS OF A 112G CONTROL PROBLEM

Ll Introduction

In this chapter we investigate the decomposition
of the control problem of Chapter IIT into two similar smaller
problems. Two goal-seeking elements Gll and Glz* will each be
concerned with one of these smaller problems. All the nota-
tional designations of Chapter IIT are carried over to this
chapter. In addition, it is understood in what follows that

i=1,2, j=1,2, and i # 3.

Consider the following partitioning of the vectors
E(t),,g(t), E(t)’ E(t), and the matrices A and D3
x(t) = [x;(8) x,(£)]",
2(t) = [z1() z,(t)]",
n(t) = [m () mp(8)]1,
a(t) = [33(4) wp(8)]1,

such that (3.1) can be expressed as

*he two~digit subscripts #11% and ®12% are used
in agreement with the notation employed in other parts of this
thesise

Ly
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X (41) = A9 (6) + Ayo%a(8) + 2y (441) + my(241)  (L.1)
(t+1) = (t) + A

(b)) + z,(t41) + my(4+1)  (L.2)

% A%y 2%y o

and the loss function (3.2) is "separablet, i.e.

g(M,X) = gll(Ml’Xl) + ng(M2’X2) (h‘B)

where

T
B M%) = 2 [y () ()] el

T
+ 51 m1 () Dym (%)

The control problem of concern to G,, is "choose Mi so as to

1i

minimize gli(Mi’xi) subject to (L.i)."

The difference between this control problem and
the one studied in Chapter ITI is the presence of the "cross-
coupling® disturbance Aij;j(t). As a result, the total dis-
turbance at each transition, call it

W, (6+1) = Ay %, (8) + 2, (W41), (Le5)
is functionally dependent on the state vector sequencen Xi'

In Chapter ITT and Appendix C, Z, of which Wi is the analogue,

*This is strictly a mathematical statement. Tt
occurs by way of X, in (4.5), hence on W, and finally X; by

interchanging i and j in (4.5)¢ An organizational inter-
pretation would be that the actions My taken by Gyq affect

the trajectory X, of Gyo's state variables by way of (lj.1)

and (4«5) and vice versa.
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in independent of X and the solutions obtained there are
based on this fact. Methods of bypassing this difficulty so
that these solutions can be applied are considered in later

sections of this chapter.

We will be concerned with finding ®equilibrium®
policies.* These are denoted by (Ml)e and (MZ)e’ and have
the property that (Ml)e is the solution to Gq4's control
problem when G, uses (M2)e and vice versa. The manner in
which the concept of equilibrium is utilized in this thesis
has been outlined in Chapters I and II. This chapter is a
step in the application of these ideas to certain linear

systems.

l1e?2 112G Control under Perfect Information

In this section we make the following

*rhe 112G control problem formulated here is an

example of a "game of prescribed duration.ﬂ(ll) This nomen-
clature refers to a multistage process in which each of n
players (here, n=2) exerts a control on the position of the
process. In the case studied here, the process is governed
by (3.1). The control exerted by the "player" G,, is through

Mi and Gli's #payoffn is determined according to how well
it keeps the value of gli(Mi’xi) down. The equilibrium policy

is analogous to an equilibr?um point in game theony,( in
the sense that (M‘l)e is optimal for Gll when G, uses (M2)e
and vice versas
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Assumption L.2+1 The 112G system is a "perfect

18)
12 both

have complete knowledge of the entire system, of
U and 2, and of each other's goals. Note that the
statement of Gli's control problem in the previous

information"(l7’ system, i.es Gy and G

section did not specify that Gli have this informa-
tions. '

In what follows, equilibrium volicies for Gll and G12 will
be found using assumption l«2.1. These policies will provide
a benchmark with which to cdmpare policies found by other

techniques in later sections.

Recall, from Chapter III, the ®"unfolded" repre-~
sentation of the closed form solution of the difference equa-
tions (L<1) and (L;.2), with notational changes appropriate to

this chapter,

~ T i -
}_(i(l) I 0 0 'R 0 'V_!'i(l) A Ei(l)
Ei(g) Aii I 0 XX} 0 Vli(z) + I-I.];i(z)
2
= = |8qq B4y T e O ¢
-1 o : : .
[ QT_l T"2 T"B ° L]
kzc"i(T)_ Ali Ali Ali eea I LEi(T) + Ill’l(T)
R385
2
A118 »
ol = Ky (R ) + Q40 (+6)
°
T
A4a%
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Bquation (L.5) can be represented as

~ r T r W
v (1)] 0 0 e 0 O x,(1)
w. o= =
1 ? fij s 0 0
z, (1)
2;(2)
+| =Ly X b By e (LaT)
2,(T)
L A
The loss function (Lel4) is rewritten as
By (MoK ) = (Xy0y)" (Ry=Uy) + My 'Eqly (L.8)
where
-
Dli O sse 0
— 0 D LU O
Eli - . .li . H
o o D,

in accordance with the unfolded representations.

From (3.6) in Chapter IIT, it is seen that the
minimun of gy, (M;,X;) subject to (4e6) occurs for
¥ = (! Ki*E'li)-lKi' (U;-K;N;C;4) (L.9)
If we combine the system of equations (4e9) for i=1 with the
system (L4.9) for i=2, we get a set of ST linear algebraic
equations in the sT unknown elements of Mi and Mé. In order

to express these in terms of C, %, and U only, it is necessary
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to eliminate the Ki and Zé which is implicitly contained in
Eé.and El’ respectively. Also, it will be helpful to rewrite
the system of equations (}4,9) as

(Ki' )'1(Kivxi+Eli)Mi =y K.W. = C (4e20)

=1 T M3 T

Substituting (L«7) into (L.6), it follows that

X; =KLy gXy + K2y o+ KM + 0y (he1l)

Now, (Le6) with i replaced by Jj, substituted into
(L11) yields

X, = KM, + KiLijEKj(Ej+Mj) + Qj] + KZ 4O (Le12)

which, from (4.7) with i and j interchanged, is

K TR KLy gRsDesXy + Kyl gKsZy

* Ky Ly KM + KTy C5 + €y + Ky2y (Ls13)
or
X; = (IK;Ly KT ji)'l(xiy_i+xir,i 5K 554K Ly 4K M
* KTy (O #Ky B340, ) o (L)

Equation (Ls1L4) is an expression of X, in terms of Y, and
Mj; hence, using (L4e14) with i and j interchanged, (L.10),
and (L4e7), the following result is obtained;

-1, _ - oam \
(K1) (K "Ry 4E My = Uy - Ky (D K48 ) = Gy

-1
) (KJMJ KJLJ iB32s

+ KLy KM R Ty 44 #K 240 j) - K2, - Oy (4415)
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Now, taking i=1, j=2, then i=2, j=1 in (L.15), a little ,
algebraic manipulating yields

for i=l, j=2; QllMl + Q12M2 =-B'l’ '

(L16) .
" 5, = 1
for i=2, j=1; Q21M1 + QooMy = Ry
where
Qy =K + (Ki') JElj_ + KiLij(I-KijiKiLij) lKijin_’
Qg = KyLyy(T-K LyyKiTy ) ]Tj

- -1
R, =U; - KiLij(I-KijiKiLij) (K Lg5K; 234K 15,0

+ sz.j"g_j) - KiZi "_C_i (h‘l'?)
The value of M; obtained by solving the linear system (L.16)

is the optimal policy from G,.'s viewpoint when G12 uses:yz,

11

and vice versa, since (4.10) is satisfied.

Because of assumption L.2.1 (perfect information),
Gll and G12 can be envisaged as arriving at the system of
equations (4.«16) independently. Then, solving this system,

G,; determines its control policy Mi from the solution, dis-

1i

regarding Mj‘ There need be no communication between Gll and

G., during this procedure. We now investigate the effect of

12
relaxing assumption 4.2.1e
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is3 An Tterative Procedure for Determining Optimal Equili-

brium Strategies without Perfect Information

In this section the assumption of perfect informa-

tion is replaced by

Assumption La3ele Gli is aware of only that part

of the causal subsystem which it affects; i.e. it
knows (li«i) but not (L.j). Also, G4 has no know-

ledge about Gy,'s goal and vice versa.
Under assumption l«3.1, Gll and G12 cannot determine equations
(L+16), as they were portrayed as doing in the previous sec-
tion. However, under certain conditions, the solution of
(4L+16) can be found by the iterative procedure* described

below.

A temporal repetition of the finite process
governed by (l.1) and (L4+2) is imagined to occur as follows:
Gy, assumes Ei(t)=9 for +=1, 2, svey T, where Ei(t) is given
by (L4e5)« Using this particular sequence, which we denote
by (Wi)l’ the operation (M’i)1 corresponding to (wﬁ)l can be
determined from (306),** reproduced here with appropriate

notational changes.

*ghich can be thought of a Wfictitious playn(:®)
of the game described in the preceding footnote.

*or from the dynamic programming solution of
Appendix C.
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M)y = (K AR )R, UK ()<, (1.18)

Then, the trajectory (X is obtained from (L4«6), rewritten

11

as
(Ei)n - Ki C!ﬁ)n *+ (Mi)n + gd' (L.19)
Gy, 1s now given the information about (xl)l, from which it

can determine (W,), using (L.7), that is,
®,), = I‘ij@,j)n-l + 2o (L+20)
Next, G,, obtains (Mé)Z and (X2)2 just as G, arrived at its

corresponding sequences above. Then G,, is given the informa=-

11
tion about (x2)2 from which it can determine Cni)B, and the
whole procedure is repeated, Continuation* of this generates

the sequences

(21)1’ (-&1)3’ (El)S’ s (thl)
(%) () Eplgs oov « (be22)

*%he iterative procedure that is carried out by

Gll and G12 could be classified as madaptive behavior® or as

a "learning process.® What each element Gli does is to modify

the vector parameters which are the elements of the sequence
Wi at each iteration to take into account "™new information®

acquired during the previous iteration. The adaptive behavior
ceases if the difference between adjacent (Wi)n's is less
than some prescribed number 86 .
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We now prove

Theorem 4e3+¢1s A sufficient condition for the
convergence of <§i)i? (Ei)2+i’ (Ei)h+i’ are is

[ [Ki(K:.Lv}(.1+E:1i)"]‘EliLinj (Kj |Kj+E1j )_lEle‘ji' | < 111
(Le23)

Proof« Substitution of (4.18) into (L419) yields
X = Ki(ﬂi)n*xi(xi'Ki*E11)~lKi'Egi'Ki(!i)nﬂlij + Q5
= Ki[i'(xi'Ki*Eli)-lKi'Ki](!i)n +g; 0 (b2l
where
8, = Gy (K KB, ) Ty (00y) (hs25)

Substitution of (4.20) into (L.2L), along with rewriting

I-(K; 'K *E5) 1Ki'Ki as (K;'K;4Eq;) 1Eli gives

(X3)p = Ky (K " KyHE4) lEliLij(Ig)n-1+£i . (L426)
where
Ty T GHK (K KR, lEligi' (L.27)

Now, if we substitute (4.26) with i replaced by j and
n replaced by n~l into (L.26) as it stands, we obtain the

important result

(X3)y = Ki(Ki'Ki*Eli)_lEliLinj(Kj'Kj*Elj)—l
By 3133 Xy no*¥s (Le28)
where
vy = g (K KB ) R T gr (Le29)
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It will be convenient in the sequel to have the abbreviations

II, =K, (K, 'K4E,,) g L mlj) 1El;j 41 (L+30)

141y 5Ky (K
ny = (%K 4 ) 7E (lsa31)
Then, the mapping (L4.28) from ()_{i)n_2 to (Zi)n becomes

(Le32)
Subtracting (Ei)n-z from (Ei)n and taking the norm" of the

(X )y =TT (X ) oy e

result yields the distance from (Z_i)n_2 to (Ei)n;

IR HIAIIERE= A (e H WP H MM
= Mzl o~ 11 (Le33)
In other words,
allx,), &)l = aal®), o &) ] (Le3ls)

where a; = ||IIi||' Referring back to the discussion on
contraction mappings in Chapter IT, we see from (L.34) that
ay <1 is a sufficient condition for the iterative procedure
described above and the associated sequences (L4.21) and

(4e22) to converge. This concludes the proof of Theorem l+3.1e

If the convergence criteria IIIIiII < 1 appearing
in the statement of Theorem L«3.1 are sabtisfied, the limits of
the sequences (4.21) and (L4.22) can be found by setting

(Zi)n = (E,i)n_2 in (4.32); thus

*,8 defined in Chapter ITI, equation (3.9).
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(%) = (J:-Irri)"ly_i (Le35)

where y. can be found from (4.25), (L.27), and (L429)s The
subscript "e" above is used as a reminder that (X,), is an
equilibrial solution or "fixed voint" of the mapping (L.32)s
Equilibrium values for Qgi)e.are found from (L.7) with

-Zj = (gj)e, and the equilibrium volicy (Mi)e is given by
(L+18) with "n" replaced by "e". We now prove

Theorem l143.2. The equilibrium vectors (Ml)e
and (MQ)e determined in the iterative pro-

cedure described above satisfy equations (L.16).
Proof. The equilibrium vectors (Mi)e, Qgi)e, and (Xi)e are
governed by the same functional relationships as their
counterpartsl%f ﬂi, and_xi in section L«2. Hence, an
identical argumeﬁt,* except for the N()e" around each se-
quence, can be used to arrive at a system of equations

identical to (L.16) with (M;)  and (My), as the unknom .

In summary, we have developed an iterative

procedure to obtain the equilibrium policies without making

® . .
This argument must be carried out from the re-
searcher's viewpoint, since under assumntion L.3.1 Gli does

not have the information necessary to derive (L.16),

**This can also be shown by direct substitution
of (M), into (L+16), but this is extremely cumbersome
algebraically.
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the #perfect information® assumption. The goal-seeking
elements Gy, and Gy, alternated in determining and applying
their control actions. In true simultaneous control, Gll
and G12 would be required to apply the control actions at the

same time. The next section is devoted to the study of true

simultaneous controles

Ly Simultaneous First-Level Control with Incomplete

Information
The purpose of this section is to investigate

conditions under which an iterative procedure similar to the
one derived in the previous section is useful in determining
equilibrium policies under the "simultaneous control® require-
ment. Throughout this section, it will be assumed that Gli
possesses information only about the dynamics of the state
variables under its cognizance,* ises Gli's control problem
is "choose M; S0 as to minimize (L.li) subject to

X (b+1) = AL %, (8) 4w, (841) + m, (t41)an (Le36)
Although G,; can measure the disturbance yi(t), it does not

know the mechanism producing w,(t), i.e. equation (L.5).

*in organizational interpretation is(22) “When
tasks have been allocated to an organizational unit in terms
of a subgoal, other goals and other aspects of the goals of
the larger organization tend to be ignored in the decisions
of the subunit.n
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The process to he controlled assumed to be an
infinite~stage process which is periocdic, with period T+1.
The dynamics are governed by (L.1) and (4.2) with

7;(t) = g, (b4004n), n =0, 1, 2, seu & (Le37)

Also, in (h.kL),

vy (b) = u, (t+nT+4n)e (le38)

The initial conditions are immosed at T+1l, 2T+2, +«s, 50 that,

i(nT"'-n) =E, n = O, l, 2, cea o (h'39)

Under this assumption, the finite T-stage process and the
associated control problems formulated earlier are simply

repeated an indefinite number of times.

o Control of this process is assumed to proceed as
follows; Gli assumes wi(t) =0 for t+71, 2, «vvy, T and obbains
(Mi)l* from (L4.9) with W= O« It simultaneously implements

(M;), and observes

ow () = X, (441) -4 %, (4)-m, (441) R))
as the process evolves over t=0, 1, ««s, T=l, according to
(4419) with n=1. At t=T, Gy will compiled the sequence
ﬂﬂi)l of wretrospective residuals®. TFor n=l, 2, 3, +.s, We

use

*As before, subscriots outside the parenthesis
indicate the iteration or, in this case, the interval, over
which the sequence is used.
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Assumption lJi«1s The anticipated* sequence of
disturbances over the time interval nT+4n, nT4n+l,
veey (nE1)T4n is (Mi)n’ the sequence of distur-—

bances observed during the previous T~stage
interval.
The control action to be applied during the nEE period is

therefore computed from the formula

M), = (Ki'Ki*Eli).-]Xi'[Qi"Ki(!i)n-l'Q]’ (k1)

n=2, 3, Ly see,

and the state trajectory‘(xi)n is governed by (4.19).

The strict requirement of simultaneous control

specifies that

(1), = Ty (£p)#2 (1:12)

is the appropriate form of (L.7) to be used in this section,

as opposed to the %lagged" version (L«20) of the last section.

If the sequence <Ei)l’ (Hi)2’ soey Q[i)n, sss CON=
verges, the anticipatory mechanism of assumption L.l.1 is
accurate to any prescribéd degree for n larger than some
N which depends on the accuracy required. We now investigate

the convergence of this sequence.

*The reader may prefer to think of ﬂi as a

stochastic vectors. The prediction is then indicated by
(B )y = BLM )| (Mydps (Bydpgs vees (B5)p]s

n::l, 2, 3, caa
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The discrepancy between the actual and anticipated

disturbances over the nEE period is

@), = (8,),~®;), 7 (lh3)
Substitute this into (4.1%9) to get

(X = i[@i)n-z*@ﬂi)n*(“-&i)n] *+Cy (b elil)
and substitute for (M,)  in (L.lL) its equivalent vector as
given by (L.l1); then,
(KD = Ky @) 4K [T=(X; T KGHE ) ]Ki'Ki (@, )n1tdy o

(Ll5)

where g, is given by (4e25)s The argument continues along
the lines of the argument from (4.2}) to (L29) in the pre-
vious section, so these steps are omitted. The important
result is the functional form of the mapping from (Zi)n_2
to <§-i)n5

(X;)5 = Ky (K "KyHEq5) lEliLinj(Kj'Kj+Elj) lEleji(’-[i)n-z

+K; @AW ) 4K, (K TR 484 ) g Ky O )ty

(LoL6)

From (L.l46) and the notions of norms and distances discussed

13043

earlier,

A[(X ) E ol = & ~X) ol
eaLLE=A R Ke SN SNNITIEAL AN AN

* Kymy Ly gk (o) q-@wy), Sl

= [T Ml ) X, + 6, (Lali7)
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where IT, and ¢, are given by (4+30) and (L4431), respectivelys
The positive term 5n is small, being a function of second
differences. Tts lower bound is rero, hence in order for

the inequality (L.l7) to hold for all possible values of Sn,

we must have
dE&i)ns(Xi)n_z_] =< ||1'Iil |d[.-(xi)n_2,(xi)n_u]. (L48)

The control procedure described above establishes
the successive application of (L.L6) which, if ||1I,|| <1,

because of (L.4B), generates the convergent sequences

(Ei)l’ (x—i)B’ s (Ei)Zn—l’ 28 (h’h9)

()_(.1)2’ (El)h’ sy O-Si)2n’ LRI ().LcSO)
We now prove

Theorem LJhel. If I‘IIill < 1, the sequences (LL9)
and (L.50) both converge to (X,),, the limit of the

sequence (L+21) in the previous section.

1 2 c .
Proofs Let (X;),~ and (zi)e denote the limits of (L.49) and
(lte50), respectively« Then, taking note of (L.L2) and (L.L3),
we see from (L.46) that the following equations are satisfied,

. 1 2 . .
" "

since (li)e and (Ei)e are also fixed pointst of the mapping

(4Lsi6) for n odd and even, respectively;
N L o\l 1 2
X;)e = (I-T1) {KiLi,j [@j,)e =(X5)e H¥y*KimiTy K Loy

[(Z-i)ez"(zi)el] } ’
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2 -1 2 1
(X;)g = (T-II;) {KiLij [@j)e '@j)e]*li*Ki"iLiniji

[(li)el"o—(i)ez]} s

from which we obtain by subtraction

[+2(z-11; )-lKi“iI‘ij KiTyq] [&; )e (X)), 1

= 2(1-T1,) K, 1, [@j)el-@j)ﬂ . (LiB)

1743
The two vector equations generated by (L.L8) for i=1, j=2 and
i=2, j=1 can only hold if
1 2 _ 1 2 _
QC,]_)G -(ll)e = _Qy (£2>e "'@2)8 - g 9
go that (L.1i6) must reduce to (4+35) in a state of equilibrium.

This concludes the proof of Theorem liolielo

We have shown that the equilibrium state for the
simultaneous control case of this section is identical to the
equilibrium state of the simpler iterative procedure of the
previous sections It follows that the equilibrium policies
(Ml)e and (MZ)e are the same, and that (Ml)e and @z)e

satisfy equations (L.16).

o5 Sub-optimality of 1L2G Control

Tn this chapter we have been concerned with the
deriviation of equilibrium policies, denoted by (Ml)e and (ME)e°
Let (M)e and (X)_ denote the over-all policy obtained by com=

bining (Ml)‘5 and (1\/,[2)e and the resulting line of behavior,
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respectively, so that, from (L.3),
gl00,5 (0,) = e [0 (X)) ] * e[ (), Xy ]+

Notice, however, that the solution of (L.16) is not necessari-

ly the solution of (3.6). Denote the latter by (M)O; then
e[on g, = e[on, ()] (beb9)

since, by definition (M)o is the point at which g(M,X)
achieves its minimum subject to (3.1). In the next chapter,
we introduce a "second-levelM unit to "coordinate" the
raction-counteraction® procedures of Gll and Gl2’ so that the

equilibrium policy (M)e is also optimal.

—————| Detweme {owm—e ] V———



CHAPTER V

SECOND IEVEL CONTRCL IN A 2L3G SYSTEM

5.1 Tntroduction

The purpose of this chapter is to investigate
the role of the second level goal-seeking element in a 213G
controller (see Fig. 2.1). We will continue to use the
control problem of Chapters ITT and IV. Having the results
of these chapters available allows us to concentrate on the
concepts relevant to second-level control. Slight changes
in notation will e pointed out; that which is carried over
will not be elaborated upon. When i and J are used as

subscripts, i=l, 2, j=1, 2, and i#j, as before,
/

We list the assumptions which will hold in the
sequels
Assumption 5411 The partitioning of x(t),

m(t), and z{t) which allows (3.1) to be re-
written as (4.1) and (L.2) is in effect.

Assumpbion 5.1.2. The goal of the second
level element G2 is considered to be the

over=z1ll controller goal. This is to mini-
mize (3.2) subject to (3.1).

Assumption 5e¢1e3« The second level element
G2 alone has knowledge about the entire system.

Tt knows the method of partitioning mentioned
above, the dynamics of the entire causal sub-
system, and the goals of the first level goal-
seeking elements.

63
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Assumption 5.lsie The first-level element Gpy

has the same information and control problem as
in Section L.« The process being controlled
is the infinite-stage periodic* one described
in that section, and the control procedure em-
ployed by Gll and G12 is identical to the one

discussed there. @,.'s loss function is re-
. 33t 1i
written as

T
gy (MoXg) = T % (8)-u(e) v x, (8)-u,%(¢)
t=]
T 3
+ 2 myt (8)Dy; my(t), (5+3)

t=1

where Dlg is positive~definite and diagonal.

5.2 Synthesis of the Optimal Control Rule

In this section, G2's control problém is "choose
Ul* and UZ* in such a manner that Gll and G12 will together
determine M so as to minimize g(M,X) subject to (3«1)«" We

will make the

*Recall the remarks made in Section lL.l; the
finite-stage control problems just repeat in time. An
"optimalt policy will be understood to be over a single
T-stage period unless otherwise noted.

*rhe nseparability® of g(M,X) as exemplified by

(4e3) in the previous chapter does not, in general, hold
here. In particular, usually we will have

D# “
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Assumption 5¢2els The convergence condition
]]TI&[[ <1 in (L.b8) is satisfied; thus, the

control procedure engaged in by Gy and Gyp

tends toward a state of equilibrium.

We can apply the results of Chapter III to get
the sequence of controlled input vectors which is optimal
from GZ'S viewpoint. This is (3.6), reproduced here for
conveniencey

(W), = (K K+B) ™K (UL -TE) (5.2)

The equilibrium policies (M‘l)e and (MZ)e are found in Chapter

IV by replacing "n" by "em in (L.18);

= = 3# . i
), = (Km0, %, (), ) (.3)
where
- . T
Dli 0 oo O
* 0 D .* see 0
Eyi” 7| A . (54)
‘ . .
‘ aos #
LO 0] Dli ]
in accordance with earlier usage. Let
), = [(xremy ™k (00-r2 ] (549)

denote the vector formed from the elements of (M)o correspond-

ing o the controlied inputs under G..!'s cognizance. In

1i
order for the equilibrium policies to agree with the optimal

over-all policy, we must have
(Mi)o = (Mi)e °

Setting the right hand sides of (5.3) and (5.5) equal to
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each other, one gets, after a little algebra,

-1 -
* =
T = Ok, (1, ) (K )R TR B ) [k o) e

(UC£2)]; (547)

Equation (5.6) specifies a rule” for G, to follow in its

act of determining the "ideal trajectories® Ul* and UZ* for
the lower level units. With these "distorted" ideal trajec-
tories, the equilibrium policies arrived at by Gll and G12

using the control procedure of Section L.l together determine

the opntimal policy.

Notice that szs rule for determining Ui*, namely
{5.7), depends on the equilibrium value Qgi)e. Because of
assumption 5.1.3, this is available to G2; the procedure for
finding it goes as follows:

le The trajectory (X)o under the optimal control
law is determined from (3.,3) with M = (M)O.

*It is interesting to note the geometrical effect

of Gy's specification of Ui* according to (5.7)e Looking

back to (4.16) and (4.17), it is easily seen that G, is adjust-

ing the positions of the hyperplanes corresponding to the
individual equations of (L,16), so that they interact at
the point represented by [(M;) s (M, )
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2. (X), is partitioned into (X), and <X2)o'
Since these are also the trajectories deter-
mined by (L+1) and (L.2) under the equili-
brium policies, ON.)e is determined from
(Le?)s *

(B)e = Ly5 (%), + (5.8)

The entire control procedure can now be envisaged
to occur as follows.* Before getting underway, i.e. prior

to t=0, G2 determines the ideal trajectories for Gl and Gl

1

from (5+7)« Then, as the process evolves as described in

2

section L.l, the sequence of policies

(Mi)l’ (Mi)29 eesy (Mi)n’ ©soy (509)
where (M'i).1 is applied from (n-1)T+{(n-l) to nT4n, approaches
the limit (Mi)o, as given by (5.5)« The optimal policy for
the infinite-stage process from G2's viewpoint is, of course

() (My)gs ovos (My)ys vees o (5.10)

Sequence (5.9) therefore represents an approximation to the

optimal (infinite-stage) policy.

*Again we remind the reader that our 213G system

is contrived to preserve the autonomy of Gll and G12; thus,

we do not allow in the systems under consideration here,
G, to "tellm G,, and G,, the (W, ), determined in (548)

Rather G2 is forced to allow them to arrive at (Wi)e with

no influence save Ui* according to (5.7)
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Let us examine the implication of the results of
this section in regard to section L5 of the previous chapter.
From that section, we can conclude, in the spirit of this
chapter, that if G2 transmits Ui*:wi instead of "distorting®
Ui according to (5.7), then the equilibrium control actions
of the first level units will be suboptimal from G2'S view-
point. Organizationally, this distortion represents a co-

ordinative action. e

5.3 The Effects of Varying Eli*

In this section we examine some aspects of allow-
ing G2 to adjust the elements of the matrix Eli* in

gy; (M;5X,), as well as the ideal trajectories Ui*.

The abbreviations,

(5411)
= #y” #y7
II; = Ky (K 'K+ 5) lEli*Linj(Kj'Kj+Elj ) 1Eij*Lji
= #y~ * .
nyo= (KRR B (5.12)

which are analogous to (L+30) and (L4.31), are also made here.

We begin by proving two theorems:

Theorem 5.3.1s The characteristic roots of the
s - . -1
positive definite matrix (K;'K,+E; ) lEli all

lie in the interval (0,1).

Proof. Ki'Ki+Eli* is positive—~definite, as we noted in
Chapter TIT; hence, its inverse and, as a result, the pro-

: E #_ . P . s
duct (Ki'Ki*Eli ) lEli =n; 1s positive~definite. Therefore,
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the characteristic roots of g are all positive. We list
two theorems from.Bellman(7) as lemmass

Lemma 5.3.1l. Tet A and B be symmetric matrices,
with B positive definite. Then

p,k(A) < ‘Lk(A"'B), k:l’ 2, sesy N
We remind the reader that pk(A) denotes the kﬁg characteristic

root of A, and recall the convention stated earlier;

By S Hy-1 S ot B S Mg

Temma 5.3.2. If a symmetric matrix A is non~

singular, the characteristic roots of A_l are
the reciprocals of the characteristic roots of
A+ In particular, if A is positive definite,

pp(8) = L™

Armed with these two lemmas, and noting that

Tfi-l = I+(Eli*)‘1xi'xi s (5.13)

we see that the matrix on the left-hand side of (5.13) has
characteristic roots all greater than unity, hence the
characteristic roots of ™y are all legs than unity. This
concludes the proof of Theorem 5.3.1e

Theorem 5¢3.2. Simultaneously increasing (de~

creasing) the elements of the positive definite
diagonal matrix E, ,* increases (decreases) [Trylls

A decrease is constrained so as to maintain the
positive definiteness of Eli*.

Proof. Denote the change in Eli* by Eli*’ which is also
positive definite. Then, the change from Eli* to

B, % + Eli* induces the change

L
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'K.)"lE i* (Ki'Ki)-]Eli*i(Ki'Ki)-l Eli* o (5.)

Consider the "4" sign in (5.14)e From Lemma 5.¢3.1, clearly
the characteristic root relationship

- - -1 »*
+#*
py (K5'KS) lEli* < py (K'K) ]E“ +(K,'Ky) Eqy

holds, which, from Lemma 5.3.2, yields

¥* #*y ¢ *y~
by (st Ey™) Ky <y (Byy¥) R A

8o that

-1 =1
3¢, »* ) I*
cuy THEM B ) KUK < opy THET) TRy TEy

Looking back at (5.13), and again utilizing Lemma 5.3.2, we
have
= #47 ¥*
ps(n) =y (K 1GHE ) e
- -1
= # .
=uy B MTREAT TN eny (B% B,
~1
Ki'Ki*I
= 1K, 4F. ¥ *—lE * E. L F
by (Ky'KgHE) % ByyT) (B Epy™)
The latter inequality, taken with the property that
1al] =;;1(A) if A is positive—definite (see Chapter III),
yields
- ~1
#* #* 4. »*
(ks " E5#814™) Ny * ] < (R KBy Byy®)
*
(Eli + Eli*) ” 3
thus, we have demonstrated the theorem for the word “increase.™

Now consider the m—t sign in (5.14). Note that, from Lemma

5«3.1 and the fact that Eli* remains positive definite after
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the change, that

My (By g ¥ %) <y (Byy #AB 4B %) = 1y (Epg*)
Using this result, the proof for the word ®decrease® is
exactly the same as for the word "increase", except for the

reversal of the inequality at each step and a ®-" bhefore

AEli*. The result is

[ (R Ry et ) T (B ot )|
< [k, rEmy 0 ¥l ] = gl
completing the proof of Theorem 5+:3+2« e now proceed to
show how G2 can use its capability of maninulating the elements
of Ell* and E12* to assure convergence of the first-level

control nrocesss

From (3.+12), there exists a mathematical princi-
ple by which we can bound the contraction factor [iIIil[ in
(LsL8) from aboves

AR AP PRI IR R T
(5.15)

By Theorem 5.3.1 the factors Il"i[‘ and l[nj[[ in the right
hand side of (5.15) are both less than unity. Moreover, by
Theorem 5.3.2, G, can adjust E,;# and E,,* so as to make

these factors small enough to assure [[IIi[|<i, i.e« to assure
that the sequence (5.9) convergess This is important, for

without convergence at the first level, there is no hope
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of G, effecting any sort of near optimal control with (5.7).

St Summary
In the two previous sections we have examined
the relative effects of G, varying the parameters Ui* and

Dli* in G;'s loss function (5eL). In general, we have seen

that D i* affects the rate of convergence of the sequences

1
(5¢9) (L.l9), (Le50), and others, while Hi* determines the
limits of these sequences. Both of these variations deter-
mine how well the sequence (5.9) approximates the control

law. Notice that, whatever the choice® of Eli*’ determina-

tion of U * according to (5.7) assures that the limit of the

sequence (5.9) is (M) e

We point out the following rather obvious pointb:
Suppose G2's control problem is to determine Ui* and select

D..* from the set dlI, where d lies in the interval (dol,

i
dIl), dol>0, in such a way to cause the sequence (5.9) to
approximate the optimal control sequence (5.10) as well as

possible. Then, dolI is the proper choice for Dli* and

U;* is then determined from (5.7) with

*or, if Eli* is held constant
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This assures the most rapid convergence of (5.9) to its limit
(because of the method of choosing Ui*), the vector (Mi)o'

Appendix D consists of a description of a numerical exampile

of how a variation in Dli* of this type effects [IIIill .



CHAPTER VI

SEIF-ORCANIZATTONAL ASPECTS OF 213G SYSTEMS

6.1 Ordering Relaticns on Structure Space

In this chapter, we develop an ordering rela-
tion over a subset of the structures of the 213G controller
which was studied in the previous chapter. The ordering
relation will be linked with the following control problem,
stated earlier in Chapter IT; "Given a dynamical system

(Dpe1 =[Qa X)) (641)
where the ransformation Qa depends on the structure and has
a contraction factor a, find the structure such that, given
an initial value (_}i)l, the system reaches equilibrium in the
shortest possible times." The contraction factor a of Qa’
when associated with the element of the structure set which
induces Qe yields a numerical measure of that structure.
According to the control problem stated above and the earlier
discussion (Chapter II) on contraction mappings, the smaller
this a, the greater the effectiveness of the controller
structures This relationship between the value of the con-
traction factor and the effectiveness of the structure allows
us to rank each element of the structure set according to the

associated numerical value of a.

h
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The criterion for choosing an element of the
structure set will be based on the rate of convergence of the
first-level control procedures of sections L.3 and LJ4e In
section 5.3, we showed the dependence of this convergence
rate on the matrix parameter Dli* of Gp5's loss function (Se1);
thus, we impose

Assumption 6.1s1s The matrix parameters Dll*

and DlQ* in the first level units' loss func-
tions will be held constant.*

This assumption will allow us to study the effects of struc-

tural changes alone on the rate of convergence.

As in Chapters IV and V, i=1, 2, j=1, 2, and
i#j. Also in addition to the above assumption, Assumptions

5.1.1 through 5.1l.44 hold throughout this chapter.

6.2 Controller Structure and Structural Change

Let us recall the statements of the control
problems of the 213G system of the previous chapter:

1. G535 "Determine M; so as to minimize (5.1)
subject to (L.36).n

*Although, as we pointed out in a footnote in
Chapter V, in general

p# | M

Organizationally, Gli may attach different "weights" between
the elements of mi(t) than does G,
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2 G2: "Determine the sequences Ul* and U2*

which will cause Q.. and G12 to determine

11
M so as to minimize (3.2) subject to (3.1).M

When the control problems stated above are considered collect-
ively, they characterize the organigzational structure of the
controller in the sense of section 1,1. We now states
Definition 6¢2,1s A member of the set of
structures considered here is an identical

allocation of the elements®* of x(t), m(t)
and z(t) to the control problemg of Gzi and

G12 stated above. With each member of the

structure set we can associate a %"selector
vector", 5 = [ol, Gé, casy ds] ', which

specifies how this allocation is made as
follows:

6k=i, i=l, 2, k=1, 2y «eey S if x, (t),
mk(t), and z (t) are under the cognizance

of Gyye

*Mesarovi6(17) defines "systems structure® as the
set of relationships which, together with the systemt!'s terms
(ives state variables, coefficients, etc.), define the system.
If we introduce the set of relationships [?hk], where "xh(t)

Th xk(t)" means "xh(t) and xk(t) are under the cognizance

of the same/different (whichever is anwropriate under that
particular allocation) first level goal-seeking element," then
it is clear that every allocation of elements to G.., and Gl
determines a unique set of relationshios [r . }ﬁe set g
hic [Fnx]

is, of course, only a subset of the total number of relation-
ships between the terms. For example, in addition to Tik | ?

there are the relationships m=n, 4w, etc., included in (L.1)
and (lj42). '

") slight conceptual difficulty arises from the
fact that in (L.36), z; (t+1) was lumped, along with Aijfd(t),
into Ei(t+l)' However, the control process of section L.l is

identical whether G..,

14 is allowed specific knowledge of z; (%)
or not.
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Henceforth, we will refer to an allocation of
the elements of x(t) only; within the framework of the control
problem considered here, this induces a similar allocation of
m(t) and z(t) by way of the partitioning of (3.1) into (L.1)
and (4e2).
Definition 6,2.2. A change in organizational
structure is simply a change in the allocationj *

this induces a transformation on the selector
vector.

For example, a “change of structure®" would occur if, say,

xk(t) were somehow moved from G..%s cognizance to G, ,'s; this

11 12

would cause a change of the control functions of all the goal-

seeking elements, although the 213G system configuration remains

the same. G, would transmit uk*(t) to G1 instead of Gll’ and

2

G,, would no longer be concerned with monitoring xk(t) or

11
making the adjustment mk(t); these would be performed by G12.

This particular change would induce the transformation l—p?

on &, , the other elements of & remaining unchanged.

k

*which induces a change in the set of relation-
ships [?hk]° Structural changes which would alter the

mathematical relationships, such as replacing "=t by %.dt,
are not considered. Neither are changes in configuration
where, say, one of the first level goal-seeking elements are
removed.
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Consider a change of the type
(6k=1, dp-—i)—9(ok=2, dp=1); (6+2)

i.es Wchange xk(t) from_)_cl(t) to gg(t), and change xp(t) from
52(1:) to ll(t)." This also causes similar changes between
the control input vectors _rgl(t) and Ee(t), the disturbance
vectors gl(t) and _z_2(t), and the ideal trajectories El*(t) and
_11_2*(1;). This change induces a row-column interchange in the

matrix A as well:

(al})ll” '(alp)lk°|° . (al}c)lp° . '(al§)ls

: S

(31 ++ Cpp et 1 (B i+ (g
] < l L] ]
(ak];)pl. (X (akp)pko I . (akl.()pp. .e (ak? )pS

. L) | . .
. L

Uasl)slo . .(asp)sk- % . (ask)spo ‘e (asl)s};-

The heavy dashed lines indicate the partitioning of A induced
by the controller structure. The subscripts inside (outside)
the parentheses indicate position in the matrix before (after)

the change. There is, therefore, an interchange of elements
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between the matrices A s and A_, as a result of

110 R0 Aoy 22

the change in controller structure indicated by (6+2). For

example, in Aqos the pEE column is transformed as

%1p B |
—

| Pspop| | ek

and the kEE row suffers the transition

42 eae aps),

+1 ap,s1

a
( kys 1

1*1 ak,sl+2 tee ak,s)"—_é(ap,s

where s; is the number of elements in Zi(t)‘ We now proceed
to indicate how a structural change such as the one described
above affects the contraction factor |[IIi[| of the mapping
(L4 l4B) associated with the first-level control procedure of

section lLelte

6.3 Evaluation of the Effects of a Change in Structure

In this section, we shall discuss the dependence
of the transformation Q, in (6+1) on the structure under which

the controller is operating.

Note that [lIIiII in (4.48) is the norm of a pro=-
duct of several matrices (see h.30), each of which is altered
by a structural change. TLooking back to the upper bound of

I‘TIi|| established by (5.15), we see that a reasonable
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starting point of the analysis of this section is to examine
how changes in K 'Ky affect llﬁill, where " is given by
(5.12); thus, we prove the three theorems:

Theorem 6+43.1
e ¥
g g+ B ]

= 1 rrgem, e M

Proofr From (3.12),

B = 110K, K48, %) (K, KR ) 7, * |

A AL T PTG S e NI

from which Theorem 6.3.1 follows.

Theorem 6,3.,2 If the elements of Eli* are
identical, and equal to ey . *, then

o, *
*H " — 1i .
||(Ki'Ki+E]. ) ]Eli*“ = = R,Th; (6+3)

Proof: Let P be an orthogonal matrix such that

Ki'K =P . P!

Ther according to Bellman(7)
-1

-1
(U'l 1i ) . -1
»*
(u2+eli ) eli . P
P S
) ey

—

L ]
(hyteys
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The diagonal elements in the matrix immediately above are
- - * - *
the characteristic roots of (KivKi+Eli ) lEli s S0 the

theorem follows immediately from property (3.17).

Theorem 6.3.3 An increase (decrease) in the
smallest characteristic root of (Eli*)-lKi'Ki
results in a decrease (increase) in

|1 (&, 1R A2, ) B ¥ |

Proofs Let P be an orthogonal matrix such that

M1
L) 0
= = .
<Eli ) ]xi'Ki P o ‘. P'.
. By
As in the proof of Theorem 6.3.2,
L4,
0]
]ApQ
=1 .
3 = L ] [ ]
14-(131i ) Ki'K; =P 0 . » P
| A

s0, an increase (decrease)in

Lemma 503.2 and equation (5.13), a decrease (increase) in
“1|(K1'K1+E11*)_1311*' = H(Ki'Ki"'Eli*)-]Eli*“ = [lmlls

QsE.D.

In the previous section, the manner in which a
structural change induced a reshuffling of the elements of

A between All’ A12’ A21’ and A,, was examined. Recalling

22
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the definitions of Ki and Lij’ we see that a structural
change would alter the elements of these matrices, with a
subsequent change in the scalars I[Ki|| and [[Lijll. Also,
from the theorems proved immediately above,# the resulting
change in K, 'K, affects the number [IﬁiIl. Therefore, the
factors in the upper bound (5.15) of IIIIiII all change when
the structure is altered. Theorem §.3,1 illustrated how a
decrease in ||Ki'Ki|| forces a lower bound of l‘"i" to
increase. Although the inequality expressed by Theorem
6+3.1 is somewhat weak, it illustrates that decreasing

||Ki'Ki|| should be avoided if one were attempting to decrease
g1

Theorem 6.3.,2 gives us some insight as to how
||ni|| varies with changes in the minimum characteristic
root of Ki'Ki- Because of the relationship expressed by
Lemma 5e¢3s1, Theorem 6.3.2 can be of value in studying the
effects of structural changes on [lnillo Theorems 64342,
5¢3+1, and 5.3.2 enforce the intuitive notion that positive
definite matrices are generalizations of positive numnbers.

Carrying this intuition a little farther, we can examine

¥and the fact that uy(K;'K;) is equal to IKi'Kil’
. the determinant of Ki'Ki’ hence is a function of all the

elements in KiVKi.




83

(4430) and (5,15) and conclude that, if it were possible to
effect a structural change which would cause only a ®slight®
change in the produce IIKll|°[|K2[|-[|L12|['[|L21|| while
increasing IIKi'KiII considerably, this would be a ®change for
the better,® as it would tend to decrease ||ni|[ and hence

an upper bound of ||IIi|[.

Theorem 6.3.3 is an attempt to resolve the appar-
ent narrow application of Theorem 6.3.2, due to the requirement
that all the diagonal elements of Eli* are identicals These
two theorems therefore complement each other, Theorem 64342

giving an insight as to the numerical behavior of ||ﬂi[| as

uN(KivKi) varies, and Theorem 6.3.3 providing the generality

to make this insight useful.

While it is possible to numerically determine
the effects of the changes in the factors in the upper of
|111;|| expressed by (5.15), it is more fruitful to calculate
|'IIi[| directly when the computer is resorted to, since this
only involves the computation of one maximum characteristic
root instead of the six necessary to determine the right-hand

side of (5.15).

In Chapter IV, we found the mapning between

(X3), and (X;),,, and the conditions under which this mapping
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is a contraction mapping, namely ]|IIi||<i; The following
theorem allows us bto easily determine the contraction factor
for the mapning between (X), and (E)n+2’ the over-all system
state trajectories over the nEE and (n+2)32 T-stage control
periods, respectively, once ||II,[] and [11,][ are known.

Theorem 64344 The contraction factor a of the
mapoing between ({)n and ()_(_)n+2 induced by the

iterative procedures between G11 and G 12 described

in sections 3 and L. is equal to the maximum
of the contraction factors [‘IIlll and [[II || of

the mapnings between (X )pand (%), ., for
i=1, 2, respectively.
Proof: Iet
IT 0
IT = 1 .
0 II,
From (3.15),
1 2
Nzl = gy )] /
Let Qi be an orthogonal matrix such that
- —_
! 0
= L .
IT ' IT; =9y 2 . Q' s
0 psiT-J
then -
II,'II 0
mr= | F ot

0 II2'112

C—— Ien———" ——
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w4 (IT7'7T,),
N
0 q,
0
where
Fql o
o,=[
0 g,

is also an orthegonal matrix.

to see that

85

uslT<II1'IIl)

P']_(IIz'IIz)

°“52T (I1,'11,)

i

Looking at (6.4) it is easy

ca = |l1T|| = [p,]_(II'II)]l/z = max {[ul(nlvn’l)]l/z,[ul(nzvne)]1/2}

from which the theorem

follows.

Theorem 6.3.4 is convenient from a computational

viewpoint, since it allows us to use the smaller matrices IIi

in the maximum characteristic root algorithm(lo) instead of

the full-size matrix IT. Also, the factors |[II,|| are of

interest; after these are obtained, because of Theorem 6.3.4,

no additional computing is required to obtain the Mover-allh

contraction factor.

The control procedure for

study here is reviewed

at this pointe

is induced by the “interplay" between

the 213G system under
an iterative procedure

Gll and 612. I1f

ilIIi||<i, this procedure converges in such a manner so that




86

the M"equilibrium control actionst of Gll and G12 are optimal
from G2's viewpoint. fThis is accomplished through Gy's
ninfluence" via adjustment of the parameters &i*(t) in Gqy's

loss function according to (5.7). Ideally, G.'s optimal state

2
trajectory would be

(D (X)gs KX)o s (645)
where (x)o is the T-stage sequence of state variables under
the optimal control law (M)o, obtained from (3.6). Hoiever,
the state trajectory under the collective control action
exerted by G,y and Gy tg:ns out to be ‘

(X)1> (X)ps (5)39 seey _ (6+6)
a sequence whose limit, due to Gy's influence, is (x)o. The
faster (6.6) converges, the better (6.6) approximates (6.5).
Theorem 6,3.4 and equation (L30) allow us to compute the
contraction factor of (6.6) for a specific element of the

structure set, i.e. allocation of state wvariables between

Gll and G12.

Suppose two different structures were being com=
pared. Further, assume that the contraction factor ||IT|]| is
smaller for one structure than for the other. Then, clearly
we could classify that structure with the smaller ||TII|| as
the ®better® of the two, since (6.6) would converge faster

when the 213G system was operating under that structural

w————t
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configuration, resulting in a better approximation to (6.5).

The next section is concerned with a specific
example illustrating the variation of ||II|| as the structure

is changed.

6.4 Self-Organizational Aspects

In this section, we make

Assumption 6.4.1. The second level goal-seeking
element Gz in the 213G system under study here

has the capability to change the structure of the
controller within the framework specified by
Definition 6,242, in addition to the capability
of setting u,*(t) in Gy;'s loss function.

This assumption and the remarks made previously in this chap-
ter compose the formulation of a “structural choicet control
problem for G2, similar to the one stated at the beginning of
this chapters. For every element of the structure set, the
213G control procedure described in the previous section
holds. No matter what structure the 213G system operates
under, the sequence (6.6) converges to (X)  This is due to
the capability of G2 to manipulate Ei*(t), which it does ac-
cording to (5.7); thus, under any structural configuration the
limit point of (6f6) is (X),+ We now make

Conjecture 6.ij.1¢ For the 213G system studied

here, there 1s a different value of []|IT]|, the

contraction factor of the mapping between
(E)n and (E)n+2 induced by the 213G control

procedure, for each element of the structure
set considered.
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We state this as a conjecture rather than a theorem because
of the immensely cumbersome algebra® associated with the
proof of the statement. We cite the remarks of the previous
section as evidence as to the plausibility of conjecture
6.t.1s Operationally, this conjecture can be proven true

or false for any special case of the system studied here, by
numerically evaluating ||II|| for every possible structure.

For example, let

(1 2 3 4 1]
304 2 1 1 ‘
o (6.7
1 1 1 6 2
2 8 2 3 8
in (3.1) and Dll*=1 and Dlz*fi‘in (5.1)s Consider the (g)=10

possible structures with two spate variables in fl(t) and

three state variables in fz(t)‘ Table VI-1 shows the results
of a gomputatiop usingl@he def%nitions of Ki agqlpij implicit
in (4e6) and (Le7), (4430), (5.4) and Theorem 6.3.4. TIn this

example, T=3. Tt is seen that only four of the ten structures

would be considered Wfeasible® i.e. have ||IT||<l, for the

*por the norm considered here, one would have to

determine ul(IIirIIi) as a function of the elements of nl,ﬂz,xl,

KZ’le’ and L2l multiplied together in the appropriate order.
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agsumed values of Dli*' These are structures 3, 7, 9, and

10.
TABLE VI-1

structure selector vector l]IIll
1 (11222) 1:879
2 (12122) 1.026
3 (L2212) +935
I (12221) 1:432
5 (2112 2) 1.251
6 (21212) 1376
7 (21221) 692
8 (2211 2) 1331
9 (22121) 846
10 (22211) +808

We will classify G2's choice of a structure for the 2L3G
system as "self-organizational activity.t One type of self-
organizational activity is for Gy to determine a table similar
to Table VI-l; then, if Conjecture 6.L4.1 is found to hold,

select that structure for which [IIII[ is a minimum.

Tt is interesting to note, from (h4.30), that
[|1T|| is independent of the uncontrollable variables U and
7. Consider the following situationg our 213G controller,
concerned with guiding the causal subsystem so as to minimize
(3.2) over each time period subject to (3.1) with A given by
(6+7)s has carried out the control procedure outlined in the
previous section with the additionallact by G2 of determining

the wbest® structure from Table VI-l1. As the process evolves,
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(6+6) tends toward its limit (X), at the fastest rate possible
within the restrictions imposed by the structure set consider-
eds The effect of an alternation® in U or 2 is to change the
optimal control law (see (3.6) ), with a resulting shift in
the ®influences® Ul* and U2* (according to (5.7) ) and the
equilibrium policies arrived at by Gll and Glz‘under these
influences. However, no "reorganization®, i.e. structural
change by Gy is necessary, because of the functional inde-
pendence of ||IT|| on U and 2. When a change in U or 2 occurs,
we can imagine t as being set equal to zero with the control
procedure in question starting over from the beginning, with
the exception that G2 need not redetermine the optimal
structure. The rate of convergence towards equilibrium,

therefore, remains the same.

Suppose instead that the elements of the matrix
A are subject to change, this change being immediately de-
tectable by G2° Then G2 is forced to rg—examine the contrac-
tion factor for all possible structures. A specific example

serves to illustrate this point. Suppose, in (6.7), ag, and

¥organizationally, a change in the ideal trajectory
U might be termed a change in the objectives of the organiza-—
tion, while a change in 2 would correspond to an environmental
alteration.

T W] W maeen e
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agg are abruptly changed from 8 to L. Table VI-2 shows the
results of a computation similar to the one that led to
Table VI-l. According to these tables, G, should leave x,(t)

under GlZ'S control and shift each of the other state vari-

ables®* from its existing structural location to the alternate

TABIE VI=2
structure 17!l

1.4h6
+835
773
1473
1.235
1.182
912
1.225
$795
817

OO0 ®-g \NEW N H

|

one. After this structural change is effected, the control
procedure evolves exactly as before. From the researcher's
viewpoint, this activity appears as teleological self-organi-
zation; the structural configuration of the 2L3G controller
is altered in response to a change in A in order to insure
that (6.6) continues to approximate (6.5) as well as possibles

The structure choice problem stated in section 6.1 is solved,

*The change from structure 7 to structure 9 might
be more plausible if a Wcost® is associated with each altera=-
tion. This would involve Gll and G12 ntradingn x2(t) and

xB(t) only.
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since that structure which causes (6.6) to be the best
approximation to (6.5) is also that structure that brings

the system into equilibrium as quickly as possible.

One more example serves to illustrate these ideas
further. Organizationally, this might be termed "reorganizing

after a merger." (Consider

(6;8)

N
oW B

o W
HENow

in (3.1), and suppose G_, and Gl2 each control two state

11
variables. Table VI-3 indicates that Gll should control

%,(t) and xu(t). It is interesting to note that, for an

TABIE VI-3
structure selector vector [[II[I
1 (1122) 1.006
2 (2121) +690
3 (1221) «959

even number of state variables, in this case four, it is
necessary to consider only (1/2)(2) possible structures,
since nothing is gained by calculating, say, ||II|| for
(22 11)s To continue, suppose xs(t) is added to the state
vector, its interactions with the other four state variables

and itself being determined by the fifth row and colum of
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A in (6.7)s Table VI-1 indicates that G, should take over
xh(t) from G, and the latter should incorporate XS(t) into

its bailiwicke.

6.5 Self-Organizational Activity from the state-Transition(é)

Viewpoint

In Appendix C we derive the dynamic programming
solution of the control problem of Chapter ITTI. This solution
is numerically equivalent to that given by (3.6), but the
philosophy of implementation is somewhat different. While
(3+6) yields the sequence of control actions %all at oncet
so that these actions are known before the process begins,
the dynamic programming solution yields a formula of the type

m(t+1) = mfx(t),u(8),2(441)] ; (649)
thus, from the state-transition viewpoint, the control actions
are not determined until the information on x(t) is known,
ices immediately before the action is to be taken. The
advantage of the dynamic programming solution was mentioned

in section 3.5.

We now prove

Theorem 6.5.1 Let a mapping from p to g be
defined by '
_q_ =BB4'E y ' (6010)
where B is a non~singular matrix.
Then a necessary condition for (6.10) to be
a contraction mapping is [|B||<1.
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Proof: If (6.10) is a contraction mapping, for two points

Py and Pys
”BH ”Bl"_pg“ < ||B21"B£2” = qu'qz” < ||P1"P2||‘ ’
hence

lIBl| <1

Q.E.D. Theorem 6.5.1 can be thought of as a companion
theorem to Theorem LJi+1 for linear mappings, since the two
assert that |[B||<l is a necéssary and sufficient condition

for (6.10) to be a contraction mapping.

Suppose that T, the number of state transitions
in eacb period, is large enough so that GQ cannot apply (3.6)
and (5+7), nor compute |[IT|| as indicated in the previous
section, all because of the large size of the matrices in
these formulas. Assume 62 selects a specific structures
Appendix E consists of a derivation of the dynamic programming

analogue of (5.7), which G, applies to arrive at Ui*, the

2
sequence Hi*(l)’ u,*(2)5 eees Ei*(T)' This is transmitted

to Gli' Then, the iterative procedure progresses as before
except that Gll and 012 use the dynamic programming so}utiqn
of Appendix C instead of the numerically equivalent (L.41).
Now, since G, was unable to compute [11]| for the particular
structure selected, it must attempt to determine it from the

state variable sequences. After five control periods have
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elapsed, G, can determine ||(X),~(X),|| and ||@)’3-(5_)5|| by
(3+9)s Because of Theorem 6.5.1, assuming G, is aware that

the mapping induced by the control procedure is of the type
(6:10), G, need only compare ||(X)1=(X)4l| with [|(2)4=(X)¢!]
to determine whether or not the chosen structure is nfeasiblew,
i.es has an associated [|II|| less than unity. Moreover, if

G, repeats this process for every structure, it can determine

2
the woptimal% structure as the one for which

H@)5=@sll (6.12)
@)=,

is a minimume

From the state-transition viewpoint, the self-
organizational activity of the 213G system is more like our
intuition tells us it shogld be. G2 selects a structure, the
procéss begins, and if (6.11) is greater than unity, Gy effects
a Wre-organization® and the control procedure starts over from
scratchs If (6.11) is less than unity, G2 can be assured
that (6.6) will converge to (E)o’ although G, may try'other

structures in an attempt to speed up this convergence.

It is important enough to note again that we have
assumed that Gé is aware that a linear mapping of the type
(6.10) is induced by the control procedure under considera-

tion. TWithout this knowledge, no conclusion could be drawn
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from the numerical value of (6.11).

6.6 Applications in Organization Theory

The general problem to which ®classical® organi-

zation theory addresses itself is the following,(zz)

Given a general purpose for an organization, we

can identify the unit tasks necessary to achieve

that purpose. The problem is to group these

tasks into individual jobs, to group the jobs

into administrative units, to group the units

into larger units, and finally to establish the

top level departments——and to make these group-

ings in such a way as to minimize the total cost

of carrying out all the activities.
In order to formulate an abstract model of an organization,
then, according to the above statement, there must be some
measure of the effectiveness of any organizational design.
This amounts to an ordering relation over the structure set.
For example, the %“assignment problem", so familiar to opera-
tions researchers, gives such a measure. In this thesis, we

have proposed another such measure and demonstrated its

feasibility by applying it to a special case.

Any normative theory of organizational behavior
must include some self-organizational capability, since, as
we mentioned in Chapter I, reorganization is a common method
of attacking organizational inefficiency.(2) The theory of
multi-level, multi-goal systems(l7’18) is ideally suited to

model this type of activity. In a real organization, the

pr———Y
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#"bossesh impose organizational changes on their subordinates.
In mInG systems theory, this is represented as we have done in
Assumption 64441, by allowing higher level units the capability

of re-allocating tasks among the first level units,

In conclusion, we must agree with Mesarovid;(17)
that a mInG system is the closest that general systems
theory can come to offering an abstract model of an organiza-
tion. This is reinforced if Churchman's(B) “characteristic
(b)" of an organization,

at any moment of time the organization is
pursuing a set of goals,

is accepted.




CHAPTER VII

Pt

SUMMARY AND CONCLUSIONS

je. 2]

7«1 Summary

In this investigation we have been concerned

-

with formulating a particular general allocation problem and

-y

solving it for an important special case. The problem con-
cerns the allocation of tasks among several interrelated §
goal-oriented control units which are collectively concerned

with controlling a causal subsystem so as to achieve some

w——

over-all purpose. Some of these control units, in order to
compensate for their being unaware of a portion of the entire ?
system and exerting an effect on only a portion of it, employ
a form of adaptive behavior in arriving at their control
actions. It is postulated, in the general case, that the
time it takes for this adaptive process to reach an equili-
brium state, if at all, is a function of the manner in which
the tasks are allocated among the control units, i.e. the
worganizational structure® of this collection of units. Tt
is argued thdt, if this is true, the rate of adaptation is

a good measure of the effectiveness of the organizational
structure, which yields a method of ranking the members of
the structure set. One structure is termed ®better? than
another if the first exhibits a higher adaptation rate than

the second.

98
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With an ordering relation over the set of struc-
tures, such as the one proposed in this thesis, it is a
simple matter conceptually to select the "bestn structure from
the set. If we allow one of the control units within the
system the capability to select the structure, the entire
system, when viewed from the outside, exhibits what we have
termed "self-organizationalh activity; the system changes its

own structure in attempting to increase its rate of adaptation.

One characteristic of real organizations is their
ability to reorganize themselves. This is accomplished in
the manner indicated above; a sub-unit, usually termed a
"manager® or Mcontrol group",(z) carries out the allocation
and re-allocation of tasks. For this reason, we have argued
that mathematical models of organizations must have some

self-organizational features.

7.2 ¢onclusions and Future Research

The latter part of this thesis, Chapters III
through VI, is concerned with developing the ideas summar-
ized in the previcus section for a linear discrete-dynaﬁic
system with a quadratic loss function. We conclude, there-
fore, that these results are applicable in this case. This
part of the thesis also demonstrates that it is possible to

construct mathematical self-organizing systems which display
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a number of conceptual similarities to the intuitive notion

of an organization.

The model of organizational behavior developed
in this thesis might more properly be termed a ®simulation.®
We have tried to imitate some intuitive conceptions of
organizational behavior rather than predict how a “real-
world" organization would operate.® TIn particular, the idea
that organizational stability depends on organizational

structure, as qualitatively argued by Dubin,(lz) is nicely

represented in our model.

The idea of applying feedback control theory or
(20)

"sygtems analysis™ in the study of organizations is not
new. However, most of the models involved in these studies
are 1L10 systems, so that there is a lack of an appropriate
description of the structure. In the theory of mInG systems,

however, any organizational structure could be modelled.

*he reader may object to our representing groups
of humans by ®goal-seeking elements." However, at least one
eminent management Scientist(ls) warns that complete rejection
by organization theorists of the "mechanical models® of humans
precludes the application of many of the recent developments
in the information and communication sciences to organization
theory'.

~p
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The simnle 213G system we have studied illustrates the idea
of tinfluence® or "indirect control®, i.e. where the higher
level unit adjusts parameters in the performance function

of units below its This idea has also been investigated by

Ackoff(l) from the viewpoint of decision theory.

Investigations into mLnG systems with m>2 would
be valuable, In particular, this introduces "middle manage-
mentt goal-seeking elements which indirectly control the
causal subsystem while, at the same time, being subjected to
control from aboves Any self-organizational activity by the
top~level unit would then create an entiz\:ely new system from
the mid-level unitst viewpoint. The latter would then be
forced to embark upon a self-organizing program of its owngy
and so on down the line. Models such as these are quite
complex, and will require a computer with a large memory to
calculate the many contraction factors at the different levels.
In addition, ®wup-and-down® mappings (mentioned briefly in
section 2.4) might need to be introduced for mLnG systems with
m>2, since *Phe{ mid=-level units will not be able to determine
O,'i)e by a procedure such as the one described in section
5.2« For, these units will normally not have complete know-

ledge of the system.
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It would be interesting to study some special
cases involving non~linear causal subsystems. Reticulation
of multi-variable non-linear systems will most certainly have
to be studied numerically. Convergence to equilibrium in the
manner that we have used it would probably occur only in

certain regions, if at all.

Needless to say, we have only scratched the sur-
face of the theory of multi-level, multi-goal and self-

organizing systems.
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APPENDIX A
EXPRESSION OF x(k) IN TERMS OF THE INITTAL STATES

AND SUBSEQUENT CONTROL ACTIONS

Given the system § obeying
x(t41) = Ax(t)+z(t+1)+m(t+1), t=0, 1, «es, T-1,
x(0)=c,
vhere z(1), z(2), «.«, 2z(T) is a known sequence of vectors, we
can write
x(1) = Ac+z(1)+m(1) (A.1)
x(2) = Ax(1)+z(2)+m(2)

= a2em|a(Lpm(1)] +2(2)4n(2)
Assume

k - .
x() = A o A 2(5)m3)] (4.2)
=

Then
x(k+1) = Ax(k)+z(k+1)+m(le+1)
= K%Tem 33 4] 209 4m(3) | 20k 1am0cs1)
A
k+1
- Ak+l£+ j:=1: k413 E(j)—#—g(jﬂ ;

hence, (A«2) holds by induction (it is true for k=1 from

(A.l) ).
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APPENDIX B
DIFFERENTIATION OF QUADRATIC AND LINEAR FORMS

WITH RESPECT TO VECTORS

Given the quadratic form

n
g(m) =mrpam = 3 , a,.mm,,
N T T 1,5 1374

where r«ml—\

My

I8
]

55 cee.

and A is a symmetric matrix, we make the following definition:

1

;j Q\IQ
o ._FUQ

t
3l
.
Ny
-e

1Ble
0Q eee

I'wo
|:’B

thus,

-/

23‘133

|

n
2:12 anjmj

= 2AM.

5y

Also, for f(m)—-c'm— E Cy My s the same definition yields
i=1
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am, | c1
daf _ . - 02 =
@ [ v | || T8
s af

am_ Cy

— —

For more complicated forms of the type;
g(m) = (Am+c)' (Am+c)
= m'AfATHclAmmIAlcte!
we notice that c'Am =m'Ate, so
g(m) = mAAm+2ctAmCT | (B+1)
and, using the abové derivations,

92 = 2Aram2atc = 241 (Amkc). (B+2)

1 gl
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APPENDIX C
THE DYNAMIC PROGRAMMING SOLUTION OF THE CONTROL PROBLEM

OF CHAPTER III

In ChapterIIT we encounter the following problem:

tminimize ]
T T
gn,X) = 1 [x(t)-u(td] [x(t)-u(t)]+ 3= m'(t)pm(t),
t=1 t=1
(C.1)
subject to the constraint
x(t+1) = Ax(t)+m(t+l)+z(t+1), (C2)

for +=0, 1, «.s, T~1, with initial conditions x(0)=c.®
The vector sequences u(l), u(2), ««s, u(T) and z(1), 2(2)
sevy 2(T) are deterministic, and the matrix D is positive

definite and diagonal.

Because of the Markovian property of the system
(C+2) and the loss function (C.1l) we can apply Bellman's

principle of optimality to get
F(N+1,¢) = min{ [c-u(T-N-1)]" E_:_-l_l_(T-N—lZl
m

%!
+m D F EI,A3+E+_Z_(T-N)]J , (Ce3)
where F(N,c) denotes the minimum possible contribution to the
loss function if the system is in state ¢ and N decisions or

selections of m(t) remain in the process.

Assume F(N,c) can be expressed in the following

form (note! ' denotes transposition):

m—— le &l sl i o [T Sl e ——
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F(N,c) = c'R(N)c-2P? (N)c#V (N) ,, (Cok)
where R(N) is a positive definite matrix, P(N) is a vector,
and V(N) is a scalar, in particular,

F(0,¢) = E—E(TH' E—E(TH

= ¢'c-2u' (T )g#ut (T)u(T) (C.5)
so that

R(0)=I, P(0)=u(T)s V(0)=u'(T)u(T) . (c.6)

From (003) and (Cch),
F(N+1,c) = min{ cre=2ut (PN-1)gtut (T-N-1)u(T-N-1)
m
+mi Dt [Re42(T-N J4m] "R(N) [Ac+2(T-N)+n]
~2p! (N)[AE-O-E&E(T-N:)]-’-V(N)} . (C.7)
To find the stationary point of the expression in
{} differentiate it and set it equal to O:
2DE+QR(N)E+ZR(N)[}g-o-g(T—NY_]-zg(N) =0,
80
m = @m(NH-’l{E(N)ﬂR(N)E&*E(T—NB} ° (008)

Substitution of m as given by (C.8) yields, after a few

algebraic manipulations,

F(N+1,0) = gg{mﬂ @(N)%(N)[M(N‘..)];IR(NHA} c
-2{3(T~N~l)+A' [T-2(v) [D+r(N)] _;]:]E’_(N )=R(N )E(T—Nﬂ} te
a1 (TN-1)u(T-N-1)-P* (V) (D4R (N)] “Ip, ()
w2_z_V(T-N){I-R(N)E)+‘R(Nﬂ-1 P(N)
+21 (T-N){I-R(N)@-O-R(Nﬂ_ } R(N)z(T-N)47(N) (C.9)
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Now, repeating the assumption made to get (C.h) for N+1
instead of N,

F(N+l,c) = cfR(N41)c~2P' (N41)c+V(N41) o (C.10)

Comparison of (C+10) and (C.9) yields the recursion relations

B(NAL) = T4A! {m(r«)@m(n) '1} R(N)A (Ce11)
P(N41) = u(T-N-1)+A! [I-R(N)[IE-O-R(Nﬂ-l} [g(n)-R(N)g(T-N)]

(C12)
V(N41) = ur(P-N-1)u(T-N-1)-pr (N) [D4R(NT] "R N)

~2E(T-N){ I-R(N) [D+R(N)] '1} P(N )4zt (T=N)
{I—R(N) @«R(Nﬂ"l} R(N)E(T-N)-W(N) (C+13)

The method of obtaining the optimal policy is:
(1) from (C6), R(0)=T, P(0)=u(T)s

(2) calculate R(N) and P(N) for N=1, 2, «us,
T-1 using the startIng values obtained in
(1) and the recursion relations (C.11l) and
(Cs12).

(3) From (C.8), we see the optimal policy is,
fOI‘ Nzr-ly T-2’ casng O’
n(r-)=[BRmY] ™ {RON-RN [Rx(r-y-1)
+z(T=Nﬂ} ,

since (C+8)/ is good for any value of the
state vector, in particular, the one re-
sulting from applying optimal control up

to that point.

The minimum value of the loss function can be
found by carrying along V(N) in the recursive procedure in

step (2) above. This is simply

H oy | 1 — o

—-

T

r—_—"" —— |
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Brypn = 2'(1)Dg(l)+FE1, Ag+_z_(1)+g(1ﬂ
= mt (1)Dm(1)
+{Ac+z(1)4m(1)] 'R(T-1) {Ac*z(1)4m(1)]

~2p! (T-1) [Actz(1)4n(1)] 47 (1-1) (C.11)

The above arguments are similar to those used by Adorno.(h)
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APPENDIX D

%*
EFFECT OF VARIATION OF D,.* AND D,,* ON [[11 il|

Let A be given by (647), and let
* _
Dli =dI
for i=l, 2, and T=3+ Figure D-1 shows the results of

evaluating I'III|| and ||II2[| as a function of d, when

x,(t) %, ()
x,(t) = 6 () = [x(t) | -
x5 x,(t)
Figure D-1l.
iz, |
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APPENDIX E

THE DYNAMIC PROGRAMMING EQUIVALENT OF (5.7)

From (C«8), in order for G., to choose its portion

11
of the optimal over-all policy, we must have

[@m(n)]‘l { g(N)-R<N>EA2+z(T“N)]}] i

-1
= [p %=, (V)] {gi(w)mi(N)[Agin_ri(T—N)]} (E+1)
where, in the left hand term, the subscript i denotes that
these are the elements of the optimal controlled input vector

corresponding to the state variables under G.,!'s cognizance.
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G, has determined (wi)e, i gy (1), x (2)s ooos By (T) in
the manner indicated in section 5.2, thus, from (E.l) we
can solve for Ei(N)’ and obtain a formula for Ei*(T-N) from

(C.12), with appropriate subscripts and z(T-N) replaced by

yie(TaN).



